Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 74346 by mathmax by abdo last updated on 22/Nov/19

find ∫  ((x+(√(x+1)))/(2(√(x−1))+3))dx

$${find}\:\int\:\:\frac{{x}+\sqrt{{x}+\mathrm{1}}}{\mathrm{2}\sqrt{{x}−\mathrm{1}}+\mathrm{3}}{dx} \\ $$

Answered by MJS last updated on 24/Nov/19

∫((x+(√(x+1)))/(3+2(√(x−1))))dx=       [t=2(√(x−1)) → dx=(√(x−1))dt]  =(1/4)∫((t(√(t^2 +8)))/(t+3))dt+(1/8)∫t^2 dt−(3/8)∫tdt+((13)/8)∫dt−((39)/8)∫(dt/(t+3))=  =(1/4)∫((t(√(t^2 +8)))/(t+3))dt+(1/(24))t^3 −(3/(16))t^2 +((13)/8)t−((39)/8)ln (t+3)    ∫((t(√(t^2 +8)))/(t+3))dt=       [u=((√2)/4)(t+(√(t^2 +8))) → dt=((2(√(2(t^2 +8))))/(t+(√(t^2 +8))))du]  =−((51(√2))/8)∫(du/(u^2 +((3(√2))/2)u−1))+(1/2)∫udu−((3(√2))/4)∫du+((13)/4)∫(du/u)+((3(√2))/4)∫(du/u^2 )+(1/2)∫(du/u^3 )=  =((3(√(17)))/4)ln ((4u+(3+(√(17)))(√2))/(4u+(3−(√(17)))(√2))) +(1/4)u^2 −((3(√2))/4)u+((13)/4)ln u −((3(√2))/(4u))−(1/(4u^2 ))=  ...  now just insert the substitutions

$$\int\frac{{x}+\sqrt{{x}+\mathrm{1}}}{\mathrm{3}+\mathrm{2}\sqrt{{x}−\mathrm{1}}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{2}\sqrt{{x}−\mathrm{1}}\:\rightarrow\:{dx}=\sqrt{{x}−\mathrm{1}}{dt}\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\int\frac{{t}\sqrt{{t}^{\mathrm{2}} +\mathrm{8}}}{{t}+\mathrm{3}}{dt}+\frac{\mathrm{1}}{\mathrm{8}}\int{t}^{\mathrm{2}} {dt}−\frac{\mathrm{3}}{\mathrm{8}}\int{tdt}+\frac{\mathrm{13}}{\mathrm{8}}\int{dt}−\frac{\mathrm{39}}{\mathrm{8}}\int\frac{{dt}}{{t}+\mathrm{3}}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\int\frac{{t}\sqrt{{t}^{\mathrm{2}} +\mathrm{8}}}{{t}+\mathrm{3}}{dt}+\frac{\mathrm{1}}{\mathrm{24}}{t}^{\mathrm{3}} −\frac{\mathrm{3}}{\mathrm{16}}{t}^{\mathrm{2}} +\frac{\mathrm{13}}{\mathrm{8}}{t}−\frac{\mathrm{39}}{\mathrm{8}}\mathrm{ln}\:\left({t}+\mathrm{3}\right) \\ $$$$ \\ $$$$\int\frac{{t}\sqrt{{t}^{\mathrm{2}} +\mathrm{8}}}{{t}+\mathrm{3}}{dt}= \\ $$$$\:\:\:\:\:\left[{u}=\frac{\sqrt{\mathrm{2}}}{\mathrm{4}}\left({t}+\sqrt{{t}^{\mathrm{2}} +\mathrm{8}}\right)\:\rightarrow\:{dt}=\frac{\mathrm{2}\sqrt{\mathrm{2}\left({t}^{\mathrm{2}} +\mathrm{8}\right)}}{{t}+\sqrt{{t}^{\mathrm{2}} +\mathrm{8}}}{du}\right] \\ $$$$=−\frac{\mathrm{51}\sqrt{\mathrm{2}}}{\mathrm{8}}\int\frac{{du}}{{u}^{\mathrm{2}} +\frac{\mathrm{3}\sqrt{\mathrm{2}}}{\mathrm{2}}{u}−\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{2}}\int{udu}−\frac{\mathrm{3}\sqrt{\mathrm{2}}}{\mathrm{4}}\int{du}+\frac{\mathrm{13}}{\mathrm{4}}\int\frac{{du}}{{u}}+\frac{\mathrm{3}\sqrt{\mathrm{2}}}{\mathrm{4}}\int\frac{{du}}{{u}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{du}}{{u}^{\mathrm{3}} }= \\ $$$$=\frac{\mathrm{3}\sqrt{\mathrm{17}}}{\mathrm{4}}\mathrm{ln}\:\frac{\mathrm{4}{u}+\left(\mathrm{3}+\sqrt{\mathrm{17}}\right)\sqrt{\mathrm{2}}}{\mathrm{4}{u}+\left(\mathrm{3}−\sqrt{\mathrm{17}}\right)\sqrt{\mathrm{2}}}\:+\frac{\mathrm{1}}{\mathrm{4}}{u}^{\mathrm{2}} −\frac{\mathrm{3}\sqrt{\mathrm{2}}}{\mathrm{4}}{u}+\frac{\mathrm{13}}{\mathrm{4}}\mathrm{ln}\:{u}\:−\frac{\mathrm{3}\sqrt{\mathrm{2}}}{\mathrm{4}{u}}−\frac{\mathrm{1}}{\mathrm{4}{u}^{\mathrm{2}} }= \\ $$$$... \\ $$$$\mathrm{now}\:\mathrm{just}\:\mathrm{insert}\:\mathrm{the}\:\mathrm{substitutions} \\ $$

Commented by abdomathmax last updated on 24/Nov/19

thankx sir mjs.

$${thankx}\:{sir}\:{mjs}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com