Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 74394 by aliesam last updated on 23/Nov/19

Commented by mathmax by abdo last updated on 23/Nov/19

1) let decompose F(x)=((4x^2 +x)/(x^3 −81x)) ⇒F(x)=((4x^2 +x)/(x(x−9)(x+9)))  =((4x+1)/((x−9)(x+9))) =(a/(x−9)) +(b/(x+9))  a=(x−9)F(x)∣_(x=9)     =((37)/(18))  b=(x+9)F(x)∣_(x=−9)     =((−35)/(−18)) =((35)/(18)) ⇒F(x)=((37)/(18(x−9))) +((35)/(18(x+9))) ⇒  ∫  ((4x^2 +x)/(x^3 −81x))dx =∫ F(x)dx =((37)/(18))ln∣x−9∣ +((35)/(18))ln∣x+9∣ +C .

1)letdecomposeF(x)=4x2+xx381xF(x)=4x2+xx(x9)(x+9)=4x+1(x9)(x+9)=ax9+bx+9a=(x9)F(x)x=9=3718b=(x+9)F(x)x=9=3518=3518F(x)=3718(x9)+3518(x+9)4x2+xx381xdx=F(x)dx=3718lnx9+3518lnx+9+C.

Commented by mathmax by abdo last updated on 23/Nov/19

let A =∫ x^3 ln(x+8)dx ⇒A =_(x+8=t)   ∫  (t−8)^3 ln(t)dt  =∫  (t^3  +3 t^2 .8 +3t .8^2  +8^3 )ln(t)dt  =∫ t^3 ln(t)dt +24 ∫ t^2 ln(t)dt + 192 ∫ t ln(t)dt +512 ∫ ln(t)dt  ∫ lnt dt =tlnt −t +c_1   ∫ tln(t) dt =_(by psrts)   (t^2 /2)lnt −∫(t^2 /2)(dt/t) =((t^2 lnt)/2)−(1/2)∫ tdt  =((t^2 lnt)/2)−(t^2 /4) +c_2   ∫ t^2 ln(t)dt =((t^3 ln(t))/3)−∫(t^3 /3)(dt/t) =((t^3 ln(t))/3)−(1/3) ∫ t^(2 ) dt  =((t^3 ln(t))/3)−(1/9)t^3  +c_3   ∫ t^3 ln(t)dt =((t^4 ln(t))/4) −∫ (t^4 /4) (dt/t) =((t^4 ln(t))/4)−(1/(16))t^4   +c_4  ⇒  A =(((x+8)^4 ln(x+8))/4)−(1/(16))(x+8)^4  +8(x+8)^3 ln(x+8)−(8/3)(x+8)^3   +192{ (((x+8)^2 ln(x+8))/2)−(((x+8)^2 )/4)}+512{(x+8)ln(x+8)−(x+8)} +C

letA=x3ln(x+8)dxA=x+8=t(t8)3ln(t)dt=(t3+3t2.8+3t.82+83)ln(t)dt=t3ln(t)dt+24t2ln(t)dt+192tln(t)dt+512ln(t)dtlntdt=tlntt+c1tln(t)dt=bypsrtst22lntt22dtt=t2lnt212tdt=t2lnt2t24+c2t2ln(t)dt=t3ln(t)3t33dtt=t3ln(t)313t2dt=t3ln(t)319t3+c3t3ln(t)dt=t4ln(t)4t44dtt=t4ln(t)4116t4+c4A=(x+8)4ln(x+8)4116(x+8)4+8(x+8)3ln(x+8)83(x+8)3+192{(x+8)2ln(x+8)2(x+8)24}+512{(x+8)ln(x+8)(x+8)}+C

Commented by ~blr237~ last updated on 23/Nov/19

f(x)=∫x^3 ln(8+x)dx   by  part  we have  u′=x^3    → u=(1/4)x^4 −(8^4 /4)  and  v=ln(8+x) → v′=(1/(8+x))   f(x)=[(((x^4 −8^4 )/4))ln(8+x)]−(1/4)∫^  ((x^4 −8^4 )/(x−(−8)))dx   = (((x^4 −8^4 )/4))ln(8+x) −(1/4)∫ (8^4 /8)[1+(−(x/8))+(−(x/8))^2 +(((−x)/8))^3 dx  =(((x^4 −8^4 )/4))ln(8+x)−4^5 [x−(x^2 /(16))+(x^3 /(3×64))−(x^4 /(4×8^3 ))]+c  So    f(x)=(((x^4 −8^4 )/4))ln(8+x)−4^5 x+4^3 x^2 −((4^2 x^3 )/3)+(x^4 /4)+c

f(x)=x3ln(8+x)dxbypartwehaveu=x3u=14x4844andv=ln(8+x)v=18+xf(x)=[(x4844)ln(8+x)]14x484x(8)dx=(x4844)ln(8+x)14848[1+(x8)+(x8)2+(x8)3dx=(x4844)ln(8+x)45[xx216+x33×64x44×83]+cSof(x)=(x4844)ln(8+x)45x+43x242x33+x44+c

Commented by MJS last updated on 24/Nov/19

I don′t think we can solve the 3^(rd)  one

Idontthinkwecansolvethe3rdone

Answered by MJS last updated on 23/Nov/19

∗  ∫((4x^2 +x)/(x^3 −81x))dx=∫((4x+1)/(x^2 −81))dx=  =((37)/(18))∫(dx/(x−9))+((35)/(18))∫(dx/(x+9))=  =((37)/(18))ln (x−9) +((35)/(18))ln (x+9) +C    ∗∗  ∫x^3 ln (x+8) dx=       [u′=x^3  ⇒ u=(1/4)x^4 ; v=ln (x+8) ⇒ v′=(1/(x+8))]  =(1/4)x^4 ln (x+8) −(1/4)∫(x^4 /(x+8))dx=         ∫(x^4 /(x+8))dx=∫(x^3 −8x^2 +64x−512+((4096)/(x+8)))dx=       =(1/4)x^4 −(8/3)x^3 +32x^2 −512x+4096ln (x+8)    =−((x(3x^3 −32x^2 +384x−6144))/(48))+((1/4)x^4 −1024)ln (x+8) +C

4x2+xx381xdx=4x+1x281dx==3718dxx9+3518dxx+9==3718ln(x9)+3518ln(x+9)+Cx3ln(x+8)dx=[u=x3u=14x4;v=ln(x+8)v=1x+8]=14x4ln(x+8)14x4x+8dx=x4x+8dx=(x38x2+64x512+4096x+8)dx==14x483x3+32x2512x+4096ln(x+8)=x(3x332x2+384x6144)48+(14x41024)ln(x+8)+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com