Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 74503 by crystal0207 last updated on 25/Nov/19

Commented by mathmax by abdo last updated on 25/Nov/19

a)∫_0 ^∞  x^(α−1)  e^(−λx) dx =_(λx=t)     ∫_0 ^∞  ((t/λ))^(α−1)  e^(−t)  (dt/λ)  =(1/λ^α )∫_0 ^∞   t^(α−1)  e^(−t)  dt =(1/λ^α )×Γ(α)  (  λ>0)  b) Γ(α+1) =∫_0 ^∞  x^α  e^(−x)  dx  and by parts  u=x^α  and v^′  =e^(−x)   Γ(α+1) =[−x^α  e^(−x) ]_0 ^∞ +∫_0 ^∞   αx^(α−1)  e^(−x)  dx  =αΓ(α)  c)∫_0 ^∞  x^n  e^(−λx)  dx =∫_0 ^∞  x^(n+1−1) e^(−λx) dx =((Γ(n+1))/λ^(n+1) )  Γ(n+1)=nΓ(n−1) =n(n−1)Γ(n−2)=n!Γ(1)  Γ(1)=∫_0 ^∞  e^(−x ) dx =[−e^(−x) ]_0 ^(+∞)  =1 ⇒∫_0 ^∞  x^n  e^(−λx)  dx =((n!)/λ^(n+1) )

$$\left.{a}\right)\int_{\mathrm{0}} ^{\infty} \:{x}^{\alpha−\mathrm{1}} \:{e}^{−\lambda{x}} {dx}\:=_{\lambda{x}={t}} \:\:\:\:\int_{\mathrm{0}} ^{\infty} \:\left(\frac{{t}}{\lambda}\right)^{\alpha−\mathrm{1}} \:{e}^{−{t}} \:\frac{{dt}}{\lambda} \\ $$$$=\frac{\mathrm{1}}{\lambda^{\alpha} }\int_{\mathrm{0}} ^{\infty} \:\:{t}^{\alpha−\mathrm{1}} \:{e}^{−{t}} \:{dt}\:=\frac{\mathrm{1}}{\lambda^{\alpha} }×\Gamma\left(\alpha\right)\:\:\left(\:\:\lambda>\mathrm{0}\right) \\ $$$$\left.{b}\right)\:\Gamma\left(\alpha+\mathrm{1}\right)\:=\int_{\mathrm{0}} ^{\infty} \:{x}^{\alpha} \:{e}^{−{x}} \:{dx}\:\:{and}\:{by}\:{parts}\:\:{u}={x}^{\alpha} \:{and}\:{v}^{'} \:={e}^{−{x}} \\ $$$$\Gamma\left(\alpha+\mathrm{1}\right)\:=\left[−{x}^{\alpha} \:{e}^{−{x}} \right]_{\mathrm{0}} ^{\infty} +\int_{\mathrm{0}} ^{\infty} \:\:\alpha{x}^{\alpha−\mathrm{1}} \:{e}^{−{x}} \:{dx} \\ $$$$=\alpha\Gamma\left(\alpha\right) \\ $$$$\left.{c}\right)\int_{\mathrm{0}} ^{\infty} \:{x}^{{n}} \:{e}^{−\lambda{x}} \:{dx}\:=\int_{\mathrm{0}} ^{\infty} \:{x}^{{n}+\mathrm{1}−\mathrm{1}} {e}^{−\lambda{x}} {dx}\:=\frac{\Gamma\left({n}+\mathrm{1}\right)}{\lambda^{{n}+\mathrm{1}} } \\ $$$$\Gamma\left({n}+\mathrm{1}\right)={n}\Gamma\left({n}−\mathrm{1}\right)\:={n}\left({n}−\mathrm{1}\right)\Gamma\left({n}−\mathrm{2}\right)={n}!\Gamma\left(\mathrm{1}\right) \\ $$$$\Gamma\left(\mathrm{1}\right)=\int_{\mathrm{0}} ^{\infty} \:{e}^{−{x}\:} {dx}\:=\left[−{e}^{−{x}} \right]_{\mathrm{0}} ^{+\infty} \:=\mathrm{1}\:\Rightarrow\int_{\mathrm{0}} ^{\infty} \:{x}^{{n}} \:{e}^{−\lambda{x}} \:{dx}\:=\frac{{n}!}{\lambda^{{n}+\mathrm{1}} } \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com