Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 74514 by mathmax by abdo last updated on 25/Nov/19

calculate ∫_0 ^(2π)    (((x−sinθ)dθ)/((x^2 −2x sinθ +1)^2 ))

$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{\left({x}−{sin}\theta\right){d}\theta}{\left({x}^{\mathrm{2}} −\mathrm{2}{x}\:{sin}\theta\:+\mathrm{1}\right)^{\mathrm{2}} } \\ $$

Commented by mathmax by abdo last updated on 26/Nov/19

we have proved that ∫_0 ^π   (dt/(x^2 −2xsin(2t)+1)) =(π/(1−x^2 )) if ∣x∣<1 and  =(π/(x^2 −1)) if ∣x∣>1  let f(x)=∫_0 ^π  (dt/(x^2 −2x sin(2t)+1)) ⇒  f(x)=_(2t =θ)   ∫_0 ^(2π)   (dθ/(2(x^2 −2xsinθ +1))) ⇒2f^′ (x)=−∫_0 ^(2π)  ((2x−2sinθ)/((x^2 (2xsinθ +1)^2 ))dθ ⇒  ∫_0 ^(2π)  (((x−sinθ))/((x^2 −2xsinθ +1)^2 ))dθ =−f^′ (x)  ∣x∣<1 ⇒f^′ (x)=−π((−2x)/((1−x^2 )^2 )) =((2πx)/((1−x^2 )^2 ))  ∣x∣>1 ⇒f^′ (x)=−((π (2x))/((x^2 −1)^2 )) =((−2πx)/((x^2 −1)^2 )) so the value of this integral  is known.

$${we}\:{have}\:{proved}\:{that}\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{{dt}}{{x}^{\mathrm{2}} −\mathrm{2}{xsin}\left(\mathrm{2}{t}\right)+\mathrm{1}}\:=\frac{\pi}{\mathrm{1}−{x}^{\mathrm{2}} }\:{if}\:\mid{x}\mid<\mathrm{1}\:{and} \\ $$$$=\frac{\pi}{{x}^{\mathrm{2}} −\mathrm{1}}\:{if}\:\mid{x}\mid>\mathrm{1}\:\:{let}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\pi} \:\frac{{dt}}{{x}^{\mathrm{2}} −\mathrm{2}{x}\:{sin}\left(\mathrm{2}{t}\right)+\mathrm{1}}\:\Rightarrow \\ $$$${f}\left({x}\right)=_{\mathrm{2}{t}\:=\theta} \:\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{{d}\theta}{\mathrm{2}\left({x}^{\mathrm{2}} −\mathrm{2}{xsin}\theta\:+\mathrm{1}\right)}\:\Rightarrow\mathrm{2}{f}^{'} \left({x}\right)=−\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\frac{\mathrm{2}{x}−\mathrm{2}{sin}\theta}{\left({x}^{\mathrm{2}} \left(\mathrm{2}{xsin}\theta\:+\mathrm{1}\right)^{\mathrm{2}} \right.}{d}\theta\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\frac{\left({x}−{sin}\theta\right)}{\left({x}^{\mathrm{2}} −\mathrm{2}{xsin}\theta\:+\mathrm{1}\right)^{\mathrm{2}} }{d}\theta\:=−{f}^{'} \left({x}\right) \\ $$$$\mid{x}\mid<\mathrm{1}\:\Rightarrow{f}^{'} \left({x}\right)=−\pi\frac{−\mathrm{2}{x}}{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\:=\frac{\mathrm{2}\pi{x}}{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$$\mid{x}\mid>\mathrm{1}\:\Rightarrow{f}^{'} \left({x}\right)=−\frac{\pi\:\left(\mathrm{2}{x}\right)}{\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} }\:=\frac{−\mathrm{2}\pi{x}}{\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} }\:{so}\:{the}\:{value}\:{of}\:{this}\:{integral} \\ $$$${is}\:{known}. \\ $$

Answered by mind is power last updated on 25/Nov/19

use provious Quation  f(x)=∫_0 ^π (dθ/(x^2 −2sin(2θ)x+1))  u=2θ  f(x)=∫_0 ^(2π) (du/(2(x^2 −2sin(u)x+1)))  ⇒2f(x)=∫_0 ^(2π) (du/(x^2 −2sin(u)x+1))= { ((((πx)/(x^2 −1)),  x>1)),(((π/(1−x^2 )),   0<x<1)) :}  2f′(x)=∫_0 ^(2π) ((−2x+2sin(u))/((x^2 −2xsin(u)+1)^2 ))  ⇒−f′(x)=∫_0 ^(2π) ((x−sin(u))/((x^2 −2xsin(u)+1)^2 ))du  f′(x)=π.(((−x^2 −1)/((x^2 +1)^2 )))      0≤x<1  f′(x)=((2xπ)/((1−x^2 )^2 )),x>1

$${use}\:{provious}\:{Quation} \\ $$$${f}\left({x}\right)=\int_{\mathrm{0}} ^{\pi} \frac{{d}\theta}{{x}^{\mathrm{2}} −\mathrm{2}{sin}\left(\mathrm{2}\theta\right){x}+\mathrm{1}} \\ $$$${u}=\mathrm{2}\theta \\ $$$${f}\left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \frac{{du}}{\mathrm{2}\left({x}^{\mathrm{2}} −\mathrm{2}{sin}\left({u}\right){x}+\mathrm{1}\right)} \\ $$$$\Rightarrow\mathrm{2}{f}\left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \frac{{du}}{{x}^{\mathrm{2}} −\mathrm{2}{sin}\left({u}\right){x}+\mathrm{1}}=\begin{cases}{\frac{\pi{x}}{{x}^{\mathrm{2}} −\mathrm{1}},\:\:{x}>\mathrm{1}}\\{\frac{\pi}{\mathrm{1}−{x}^{\mathrm{2}} },\:\:\:\mathrm{0}<{x}<\mathrm{1}}\end{cases} \\ $$$$\mathrm{2}{f}'\left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \frac{−\mathrm{2}{x}+\mathrm{2}{sin}\left({u}\right)}{\left({x}^{\mathrm{2}} −\mathrm{2}{xsin}\left({u}\right)+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\Rightarrow−{f}'\left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \frac{{x}−{sin}\left({u}\right)}{\left({x}^{\mathrm{2}} −\mathrm{2}{xsin}\left({u}\right)+\mathrm{1}\right)^{\mathrm{2}} }{du} \\ $$$${f}'\left({x}\right)=\pi.\left(\frac{−{x}^{\mathrm{2}} −\mathrm{1}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }\right)\:\:\:\:\:\:\mathrm{0}\leqslant{x}<\mathrm{1} \\ $$$${f}'\left({x}\right)=\frac{\mathrm{2}{x}\pi}{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{2}} },{x}>\mathrm{1} \\ $$

Commented by mathmax by abdo last updated on 26/Nov/19

thank you sir.

$${thank}\:{you}\:{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com