Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 74520 by chess1 last updated on 25/Nov/19

Answered by MJS last updated on 26/Nov/19

0≤x<2π  tan x >sin x  ((sin x)/(cos x))>sin x  case 1: sin x >0 ⇔ 0<x<π  (1/(cos x))>1 ⇔ 0<x<(π/2)∨((3π)/2)<x<2π  ⇒ 0<x<(π/2)  case 2: sin x <0 ⇔ π<x<2π  (1/(cos x))<1 ⇔ (π/2)<x<((3π)/2)  ⇒ π<x<((3π)/2)    ⇒ nπ<x<nπ+(π/2) with n∈Z  or x∈ ]nπ; nπ+(π/2)[ with n∈Z

0x<2πtanx>sinxsinxcosx>sinxcase1:sinx>00<x<π1cosx>10<x<π23π2<x<2π0<x<π2case2:sinx<0π<x<2π1cosx<1π2<x<3π2π<x<3π2nπ<x<nπ+π2withnZorx]nπ;nπ+π2[withnZ

Commented by chess1 last updated on 26/Nov/19

thanks

thanks

Terms of Service

Privacy Policy

Contact: info@tinkutara.com