Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 74526 by Kunal12588 last updated on 25/Nov/19

prove that  (1/2)tan^(−1) x=cos^(−1) ((√((1+(√(1+x^2 )))/(2(√(1+x^2 ))))))  using substitution x=cos 2θ

$${prove}\:{that} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{tan}^{−\mathrm{1}} {x}={cos}^{−\mathrm{1}} \left(\sqrt{\frac{\mathrm{1}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{\mathrm{2}\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}}\right) \\ $$$${using}\:{substitution}\:{x}={cos}\:\mathrm{2}\theta \\ $$

Answered by mind is power last updated on 25/Nov/19

miss click  i think is x=tg(2θ)  true for x≥0  x=−1  tan^− (−1)=−(π/4)  we get −(π/8)  cos^− (x)∈[0,π]  since  t→tg(2θ) is bjection   I=]0,(π/4)[→R^+   ⇒ ∀x∈R ∃!  θ∈I  ∣  x=tg(2θ)  tan^(−1) (tg(2θ))=2θ   since 2θ∈]0,(π/2)[  lHs =θ  1+x^2 =(1/(cos^2 (2θ)))⇒(√(1+x^2 ))=(1/(cos(2θ))),since cos(2θ)≥0  over I  (√((1+(√(1+x^2 )))/(2(√(1+x^2 )))))=(√((1+(1/(cos(2θ))))/(2/(cos(2θ)))))=(√((1+cos(2θ))/2))  1+cos(2θ)=2cos^2 (θ)⇒(√((2cos^2 (θ))/2))=∣cos(θ)∣=cos(θ)  cos^− (cos(θ))=θ  cause θ∈]0,(π/4)[  so θ=θ   this ⇒∀x≥0  ((tan^− (x))/2)=cos^(−1) (((√(1+(√(1+x^2 ))))/(2(√(1+x^2 )))))

$${miss}\:{click} \\ $$$${i}\:{think}\:{is}\:{x}={tg}\left(\mathrm{2}\theta\right) \\ $$$${true}\:{for}\:{x}\geqslant\mathrm{0} \\ $$$${x}=−\mathrm{1}\:\:{tan}^{−} \left(−\mathrm{1}\right)=−\frac{\pi}{\mathrm{4}} \\ $$$${we}\:{get}\:−\frac{\pi}{\mathrm{8}} \\ $$$${cos}^{−} \left({x}\right)\in\left[\mathrm{0},\pi\right] \\ $$$${since}\:\:{t}\rightarrow{tg}\left(\mathrm{2}\theta\right)\:{is}\:{bjection}\: \\ $$$$\left.{I}=\right]\mathrm{0},\frac{\pi}{\mathrm{4}}\left[\rightarrow\mathbb{R}^{+} \right. \\ $$$$\Rightarrow\:\forall{x}\in\mathbb{R}\:\exists!\:\:\theta\in{I}\:\:\mid\:\:{x}={tg}\left(\mathrm{2}\theta\right) \\ $$$$\left.\mathrm{tan}^{−\mathrm{1}} \left({tg}\left(\mathrm{2}\theta\right)\right)=\mathrm{2}\theta\:\:\:{since}\:\mathrm{2}\theta\in\right]\mathrm{0},\frac{\pi}{\mathrm{2}}\left[\right. \\ $$$${lHs}\:=\theta \\ $$$$\mathrm{1}+{x}^{\mathrm{2}} =\frac{\mathrm{1}}{{cos}^{\mathrm{2}} \left(\mathrm{2}\theta\right)}\Rightarrow\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }=\frac{\mathrm{1}}{{cos}\left(\mathrm{2}\theta\right)},{since}\:{cos}\left(\mathrm{2}\theta\right)\geqslant\mathrm{0}\:\:{over}\:{I} \\ $$$$\sqrt{\frac{\mathrm{1}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{\mathrm{2}\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}}=\sqrt{\frac{\mathrm{1}+\frac{\mathrm{1}}{{cos}\left(\mathrm{2}\theta\right)}}{\frac{\mathrm{2}}{{cos}\left(\mathrm{2}\theta\right)}}}=\sqrt{\frac{\mathrm{1}+{cos}\left(\mathrm{2}\theta\right)}{\mathrm{2}}} \\ $$$$\mathrm{1}+{cos}\left(\mathrm{2}\theta\right)=\mathrm{2}{cos}^{\mathrm{2}} \left(\theta\right)\Rightarrow\sqrt{\frac{\mathrm{2}{cos}^{\mathrm{2}} \left(\theta\right)}{\mathrm{2}}}=\mid{cos}\left(\theta\right)\mid={cos}\left(\theta\right) \\ $$$$\left.{cos}^{−} \left({cos}\left(\theta\right)\right)=\theta\:\:{cause}\:\theta\in\right]\mathrm{0},\frac{\pi}{\mathrm{4}}\left[\right. \\ $$$${so}\:\theta=\theta\:\:\:{this}\:\Rightarrow\forall{x}\geqslant\mathrm{0}\:\:\frac{{tan}^{−} \left({x}\right)}{\mathrm{2}}=\mathrm{cos}^{−\mathrm{1}} \left(\frac{\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}}{\mathrm{2}\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com