Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 74554 by shubham90412@gmail.com last updated on 26/Nov/19

Find the superimum of the set {(n^2 /2^n )}

Findthesuperimumoftheset{n22n}

Answered by MJS last updated on 26/Nov/19

trying  S={0, (1/2), 1, (9/8), 1, ((25)/(32)), (9/(16)), ...}    calculating  f(x)=(x^2 /2^x )  f′(x)=(x/2^x )(2−xln 2)  (x/2^x )(2−xln 2)=0 ⇒ x=0∨x=(2/(ln 2))≈2.89  f′′(x)=(((ln 2)^2 x^2 −4xln 2 +2)/2^x )  f′′(0)>0 ⇒ x=0 is minimum  f′′((2/(ln 2)))<0 ⇒ x=(2/(ln 2)) is maximum  ⇒ we have to try n=⌊(2/(ln 2))⌋=2∨n=⌈(2/(ln 2))⌉=3  ⇒ supremium at n=3

tryingS={0,12,1,98,1,2532,916,...}calculatingf(x)=x22xf(x)=x2x(2xln2)x2x(2xln2)=0x=0x=2ln22.89f(x)=(ln2)2x24xln2+22xf(0)>0x=0isminimumf(2ln2)<0x=2ln2ismaximumwehavetotryn=2ln2=2n=2ln2=3supremiumatn=3

Terms of Service

Privacy Policy

Contact: info@tinkutara.com