Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 74594 by ajfour last updated on 27/Nov/19

Commented by ajfour last updated on 27/Nov/19

Reposted: Q.74557  A particle of mass m tied to O  with a string of length b and  released at t=0 at the rim of  a hollow hemisphere crucible.  The particle slides down and  reaches the rim again at t=T.  Find T if  b<R(√2) . Assume  frictionless fixed surface.

$${Reposted}:\:{Q}.\mathrm{74557} \\ $$$${A}\:{particle}\:{of}\:{mass}\:{m}\:{tied}\:{to}\:{O} \\ $$$${with}\:{a}\:{string}\:{of}\:{length}\:{b}\:{and} \\ $$$${released}\:{at}\:{t}=\mathrm{0}\:{at}\:{the}\:{rim}\:{of} \\ $$$${a}\:{hollow}\:{hemisphere}\:{crucible}. \\ $$$${The}\:{particle}\:{slides}\:{down}\:{and} \\ $$$${reaches}\:{the}\:{rim}\:{again}\:{at}\:{t}={T}. \\ $$$${Find}\:{T}\:{if}\:\:{b}<{R}\sqrt{\mathrm{2}}\:.\:{Assume} \\ $$$${frictionless}\:{fixed}\:{surface}. \\ $$

Answered by ajfour last updated on 27/Nov/19

Commented by ajfour last updated on 27/Nov/19

why dint you attempt, Sir ?

$${why}\:{dint}\:{you}\:{attempt},\:{Sir}\:? \\ $$

Commented by mr W last updated on 27/Nov/19

i saw your attemp in the early post.   i thought there is maybe an other way  to solve: we find at first the orbit of  the mass in terms of a parameter θ,  and then the velocity also in terms of  θ acc. to ((mv^2 )/2)=mgΔh(θ). but i had no  time to work it out. then i saw this  solution of yours. that is similar to  that what i thought of. i didn′t  expect that we can get such a simple  result.

$${i}\:{saw}\:{your}\:{attemp}\:{in}\:{the}\:{early}\:{post}.\: \\ $$$${i}\:{thought}\:{there}\:{is}\:{maybe}\:{an}\:{other}\:{way} \\ $$$${to}\:{solve}:\:{we}\:{find}\:{at}\:{first}\:{the}\:{orbit}\:{of} \\ $$$${the}\:{mass}\:{in}\:{terms}\:{of}\:{a}\:{parameter}\:\theta, \\ $$$${and}\:{then}\:{the}\:{velocity}\:{also}\:{in}\:{terms}\:{of} \\ $$$$\theta\:{acc}.\:{to}\:\frac{{mv}^{\mathrm{2}} }{\mathrm{2}}={mg}\Delta{h}\left(\theta\right).\:{but}\:{i}\:{had}\:{no} \\ $$$${time}\:{to}\:{work}\:{it}\:{out}.\:{then}\:{i}\:{saw}\:{this} \\ $$$${solution}\:{of}\:{yours}.\:{that}\:{is}\:{similar}\:{to} \\ $$$${that}\:{what}\:{i}\:{thought}\:{of}.\:{i}\:{didn}'{t} \\ $$$${expect}\:{that}\:{we}\:{can}\:{get}\:{such}\:{a}\:{simple} \\ $$$${result}. \\ $$

Commented by mr W last updated on 27/Nov/19

nice solution!

$${nice}\:{solution}! \\ $$

Commented by ajfour last updated on 27/Nov/19

b^2 =r^2 +(R−(√(R^2 −r^2 )) )^2   ⇒ b^2 −r^2 =R^2 +R^2 −r^2 −2R(√(R^2 −r^2 ))   (b^2 −2R^2 )^2 = 4R^2 (R^2 −r^2 )  ⇒  4R^2 r^2 = 4b^2 R^2 −b^4          r= b(√(1−((b/(2R)))^2 ))    N((r/R))+T((r/b))−mgcos θ = ((mv^2 )/r)       mgsin θ = ((mrωdω)/dθ)  ⇒  ω^2  = ((2gcos θ)/r)  ________________________      T = −2(√(r/(2g)))∫_(π/2) ^( 0) (√(sec θ))dθ        T = 2(√(r/(2g))) ×(2.62206) .  ________________________  Additionally:    T(((√(b^2 −r^2 ))/b))=N(((√(R^2 −r^2 ))/R))  ■

$${b}^{\mathrm{2}} ={r}^{\mathrm{2}} +\left({R}−\sqrt{{R}^{\mathrm{2}} −{r}^{\mathrm{2}} }\:\right)^{\mathrm{2}} \\ $$$$\Rightarrow\:{b}^{\mathrm{2}} −{r}^{\mathrm{2}} ={R}^{\mathrm{2}} +{R}^{\mathrm{2}} −{r}^{\mathrm{2}} −\mathrm{2}{R}\sqrt{{R}^{\mathrm{2}} −{r}^{\mathrm{2}} } \\ $$$$\:\left({b}^{\mathrm{2}} −\mathrm{2}{R}^{\mathrm{2}} \right)^{\mathrm{2}} =\:\mathrm{4}{R}^{\mathrm{2}} \left({R}^{\mathrm{2}} −{r}^{\mathrm{2}} \right) \\ $$$$\Rightarrow\:\:\mathrm{4}{R}^{\mathrm{2}} {r}^{\mathrm{2}} =\:\mathrm{4}{b}^{\mathrm{2}} {R}^{\mathrm{2}} −{b}^{\mathrm{4}} \\ $$$$\:\:\:\:\:\:\:{r}=\:{b}\sqrt{\mathrm{1}−\left(\frac{{b}}{\mathrm{2}{R}}\right)^{\mathrm{2}} } \\ $$$$\:\:{N}\left(\frac{{r}}{{R}}\right)+{T}\left(\frac{{r}}{{b}}\right)−{mg}\mathrm{cos}\:\theta\:=\:\frac{{mv}^{\mathrm{2}} }{{r}} \\ $$$$\:\:\:\:\:{mg}\mathrm{sin}\:\theta\:=\:\frac{{mr}\omega{d}\omega}{{d}\theta} \\ $$$$\Rightarrow\:\:\omega^{\mathrm{2}} \:=\:\frac{\mathrm{2}{g}\mathrm{cos}\:\theta}{{r}} \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$$$\:\:\:\:{T}\:=\:−\mathrm{2}\sqrt{\frac{{r}}{\mathrm{2}{g}}}\int_{\pi/\mathrm{2}} ^{\:\mathrm{0}} \sqrt{\mathrm{sec}\:\theta}{d}\theta\: \\ $$$$\:\:\:\:\:{T}\:=\:\mathrm{2}\sqrt{\frac{{r}}{\mathrm{2}{g}}}\:×\left(\mathrm{2}.\mathrm{62206}\right)\:. \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$$${Additionally}: \\ $$$$\:\:{T}\left(\frac{\sqrt{{b}^{\mathrm{2}} −{r}^{\mathrm{2}} }}{{b}}\right)={N}\left(\frac{\sqrt{{R}^{\mathrm{2}} −{r}^{\mathrm{2}} }}{{R}}\right) \\ $$$$\blacksquare \\ $$

Commented by ajfour last updated on 27/Nov/19

Nice to know your opinions sir.

$${Nice}\:{to}\:{know}\:{your}\:{opinions}\:{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com