Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 74615 by chess1 last updated on 27/Nov/19

Answered by mind is power last updated on 27/Nov/19

a=8−b  (2)⇔(8−b)^2 +b^2 +c^2 =32  x^2 +y^2 ≥(((x+y)^2 )/2)  ⇒(8−b)^2 +b^2 ≥(((8−b+b)^2 )/2)=32  but c^2 +(8−b)^2 +b^2 =32..3  ⇒(8−b)^2 +b^2 =32⇒8−b=b⇒b=4  3⇒c=0  a=8−4=4  (a,b,c)=(4,4,0)

$$\mathrm{a}=\mathrm{8}−\mathrm{b} \\ $$$$\left(\mathrm{2}\right)\Leftrightarrow\left(\mathrm{8}−\mathrm{b}\right)^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} =\mathrm{32} \\ $$$$\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \geqslant\frac{\left(\mathrm{x}+\mathrm{y}\right)^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\Rightarrow\left(\mathrm{8}−\mathrm{b}\right)^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} \geqslant\frac{\left(\mathrm{8}−\mathrm{b}+\mathrm{b}\right)^{\mathrm{2}} }{\mathrm{2}}=\mathrm{32} \\ $$$$\mathrm{but}\:\mathrm{c}^{\mathrm{2}} +\left(\mathrm{8}−\mathrm{b}\right)^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} =\mathrm{32}..\mathrm{3} \\ $$$$\Rightarrow\left(\mathrm{8}−\mathrm{b}\right)^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} =\mathrm{32}\Rightarrow\mathrm{8}−\mathrm{b}=\mathrm{b}\Rightarrow\mathrm{b}=\mathrm{4} \\ $$$$\mathrm{3}\Rightarrow\mathrm{c}=\mathrm{0} \\ $$$$\mathrm{a}=\mathrm{8}−\mathrm{4}=\mathrm{4} \\ $$$$\left(\mathrm{a},\mathrm{b},\mathrm{c}\right)=\left(\mathrm{4},\mathrm{4},\mathrm{0}\right) \\ $$$$ \\ $$

Answered by JDamian last updated on 28/Nov/19

Geometric   approach  Expression (2) stands for a sphere which  radius length is 4(√(2.))  Expression (1) stands for a plane.    The sphere and the plane have contact  in c=0. Therefore, the problem is narrowed  to find the points where a straight line and  a circle intersect:     { ((a+b),=,8),((a^2 +b^2 ),=,(32)) :}       ⇒ a=4,  b=4

$$\boldsymbol{\mathrm{Geometric}}\:\:\:\boldsymbol{\mathrm{approach}} \\ $$$${Expression}\:\left(\mathrm{2}\right)\:{stands}\:{for}\:{a}\:{sphere}\:{which} \\ $$$${radius}\:{length}\:{is}\:\mathrm{4}\sqrt{\mathrm{2}.} \\ $$$${Expression}\:\left(\mathrm{1}\right)\:{stands}\:{for}\:{a}\:{plane}. \\ $$$$ \\ $$$${The}\:{sphere}\:{and}\:{the}\:{plane}\:{have}\:{contact} \\ $$$${in}\:{c}=\mathrm{0}.\:{Therefore},\:{the}\:{problem}\:{is}\:{narrowed} \\ $$$${to}\:{find}\:{the}\:{points}\:{where}\:{a}\:{straight}\:{line}\:{and} \\ $$$${a}\:{circle}\:{intersect}: \\ $$$$ \\ $$$$\begin{cases}{{a}+{b}}&{=}&{\mathrm{8}}\\{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }&{=}&{\mathrm{32}}\end{cases}\:\:\:\:\:\:\:\Rightarrow\:{a}=\mathrm{4},\:\:{b}=\mathrm{4} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com