Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 74649 by ajfour last updated on 28/Nov/19

Commented by ajfour last updated on 28/Nov/19

  Find θ_(max)  in terms of a,b,c.  The boundary is an ellipse.

$$\:\:{Find}\:\theta_{{max}} \:{in}\:{terms}\:{of}\:{a},{b},{c}. \\ $$$${The}\:{boundary}\:{is}\:{an}\:{ellipse}. \\ $$

Answered by ajfour last updated on 28/Nov/19

(x^2 /a^2 )+(y^2 /b^2 )=1    ⇒ (dy/dx)=y_1 = −((b^2 x)/(a^2 y))  tan θ = (((y/(x−c))−(y/x))/(1+(y^2 /(x(x−c))))) = m      m = ((cy)/(x(x−c)+y^2 ))    (dm/dx) = 0 ⇒      y_1 {x(x−c)+y^2 }= y(2x−c+2yy_1 )  ⇒ y_1 {x(x−c)+3y^2 }= y(2x−c)   ⇒ ((b^2 x)/a^2 ){x(x−c)+3b^2 (1−(x^2 /a^2 ))}            +b^2 (2x−c)(1−(x^2 /a^2 ))= 0  ⇒  (1+((3b^2 )/a^2 ))x^3 +((b^2 c)/a^2 )x^2 −b^2 (2+((3b^2 )/a^2 ))x+b^2 c = 0  let  (x/a) = t , (b/a)=λ ,  (c/a)=μ   ⇒    (1+3λ^2 )t^3 +λ^2 μt^2 −λ^2 (2+3λ^2 )t         +λ^2 μ = 0  ⇒  t^3 +(((λ^2 μ)/(1+3λ^2 )))t^2 −((λ^2 (2+3λ^2 )t)/((1+3λ^2 )))         +((λ^2 μ)/(1+3λ^2 )) = 0  _________________________  If  λ=(2/3) , μ=(1/2)     63t^3 +6t^2 −40t+6=0     t= 0.16035054   (suitable value)  _________________________     θ_(max) = tan^(−1) {((cy)/(x(x−c)+y^2 ))}        =tan^(−1) {((μλ(√(1−t^2 )))/(t(t−μ)+λ^2 (1−t^2 )))}      for  λ=2/3 , μ=1/2     θ_(max)  = 40.9957° .

$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1}\:\:\:\:\Rightarrow\:\frac{{dy}}{{dx}}={y}_{\mathrm{1}} =\:−\frac{{b}^{\mathrm{2}} {x}}{{a}^{\mathrm{2}} {y}} \\ $$$$\mathrm{tan}\:\theta\:=\:\frac{\frac{{y}}{{x}−{c}}−\frac{{y}}{{x}}}{\mathrm{1}+\frac{{y}^{\mathrm{2}} }{{x}\left({x}−{c}\right)}}\:=\:{m} \\ $$$$\:\:\:\:{m}\:=\:\frac{{cy}}{{x}\left({x}−{c}\right)+{y}^{\mathrm{2}} } \\ $$$$\:\:\frac{{dm}}{{dx}}\:=\:\mathrm{0}\:\Rightarrow\: \\ $$$$\:\:\:{y}_{\mathrm{1}} \left\{{x}\left({x}−{c}\right)+{y}^{\mathrm{2}} \right\}=\:{y}\left(\mathrm{2}{x}−{c}+\mathrm{2}{yy}_{\mathrm{1}} \right) \\ $$$$\Rightarrow\:{y}_{\mathrm{1}} \left\{{x}\left({x}−{c}\right)+\mathrm{3}{y}^{\mathrm{2}} \right\}=\:{y}\left(\mathrm{2}{x}−{c}\right) \\ $$$$\:\Rightarrow\:\frac{{b}^{\mathrm{2}} {x}}{{a}^{\mathrm{2}} }\left\{{x}\left({x}−{c}\right)+\mathrm{3}{b}^{\mathrm{2}} \left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\right)\right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:+{b}^{\mathrm{2}} \left(\mathrm{2}{x}−{c}\right)\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\right)=\:\mathrm{0} \\ $$$$\Rightarrow\:\:\left(\mathrm{1}+\frac{\mathrm{3}{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\right){x}^{\mathrm{3}} +\frac{{b}^{\mathrm{2}} {c}}{{a}^{\mathrm{2}} }{x}^{\mathrm{2}} −{b}^{\mathrm{2}} \left(\mathrm{2}+\frac{\mathrm{3}{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\right){x}+{b}^{\mathrm{2}} {c}\:=\:\mathrm{0} \\ $$$${let}\:\:\frac{{x}}{{a}}\:=\:{t}\:,\:\frac{{b}}{{a}}=\lambda\:,\:\:\frac{{c}}{{a}}=\mu\:\:\:\Rightarrow \\ $$$$\:\:\left(\mathrm{1}+\mathrm{3}\lambda^{\mathrm{2}} \right){t}^{\mathrm{3}} +\lambda^{\mathrm{2}} \mu{t}^{\mathrm{2}} −\lambda^{\mathrm{2}} \left(\mathrm{2}+\mathrm{3}\lambda^{\mathrm{2}} \right){t} \\ $$$$\:\:\:\:\:\:\:+\lambda^{\mathrm{2}} \mu\:=\:\mathrm{0} \\ $$$$\Rightarrow\:\:{t}^{\mathrm{3}} +\left(\frac{\lambda^{\mathrm{2}} \mu}{\mathrm{1}+\mathrm{3}\lambda^{\mathrm{2}} }\right){t}^{\mathrm{2}} −\frac{\lambda^{\mathrm{2}} \left(\mathrm{2}+\mathrm{3}\lambda^{\mathrm{2}} \right){t}}{\left(\mathrm{1}+\mathrm{3}\lambda^{\mathrm{2}} \right)} \\ $$$$\:\:\:\:\:\:\:+\frac{\lambda^{\mathrm{2}} \mu}{\mathrm{1}+\mathrm{3}\lambda^{\mathrm{2}} }\:=\:\mathrm{0} \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$$${If}\:\:\lambda=\frac{\mathrm{2}}{\mathrm{3}}\:,\:\mu=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\:\:\:\mathrm{63}{t}^{\mathrm{3}} +\mathrm{6}{t}^{\mathrm{2}} −\mathrm{40}{t}+\mathrm{6}=\mathrm{0} \\ $$$$\:\:\:{t}=\:\mathrm{0}.\mathrm{16035054}\:\:\:\left({suitable}\:{value}\right) \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$$$\:\:\:\theta_{{max}} =\:\mathrm{tan}^{−\mathrm{1}} \left\{\frac{{cy}}{{x}\left({x}−{c}\right)+{y}^{\mathrm{2}} }\right\} \\ $$$$\:\:\:\:\:\:=\mathrm{tan}^{−\mathrm{1}} \left\{\frac{\mu\lambda\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}{{t}\left({t}−\mu\right)+\lambda^{\mathrm{2}} \left(\mathrm{1}−{t}^{\mathrm{2}} \right)}\right\} \\ $$$$\:\:\:\:{for}\:\:\lambda=\mathrm{2}/\mathrm{3}\:,\:\mu=\mathrm{1}/\mathrm{2} \\ $$$$\:\:\:\theta_{{max}} \:=\:\mathrm{40}.\mathrm{9957}°\:. \\ $$

Commented by ajfour last updated on 29/Nov/19

Sir, do you agree with this answer?

$${Sir},\:{do}\:{you}\:{agree}\:{with}\:{this}\:{answer}? \\ $$

Commented by mr W last updated on 29/Nov/19

with  m = ((cy)/(x(x−c)+y^2 ))  i.e.  m = ((μλsin φ)/(cos φ(cos φ−μ)+λ^2 sin^2  φ))  and λ=(2/3), μ=0.5  we get  θ_(max) =42.7896°

$${with} \\ $$$${m}\:=\:\frac{{cy}}{{x}\left({x}−{c}\right)+{y}^{\mathrm{2}} } \\ $$$${i}.{e}. \\ $$$${m}\:=\:\frac{\mu\lambda\mathrm{sin}\:\phi}{\mathrm{cos}\:\phi\left(\mathrm{cos}\:\phi−\mu\right)+\lambda^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\phi} \\ $$$${and}\:\lambda=\frac{\mathrm{2}}{\mathrm{3}},\:\mu=\mathrm{0}.\mathrm{5} \\ $$$${we}\:{get} \\ $$$$\theta_{{max}} =\mathrm{42}.\mathrm{7896}° \\ $$

Answered by mr W last updated on 28/Nov/19

Commented by mr W last updated on 28/Nov/19

Commented by mr W last updated on 28/Nov/19

let λ=(b/a), μ=(c/a)  P(a cos φ, b sin φ)  tan α=(b/a)tan φ=λ tan φ  tan ϕ=(a/b)tan φ=((tan φ)/λ)  tan β=((b sin φ)/(c−a cos φ))=((λ sin φ)/(μ−cos φ))  α=ϕ−(θ/2) ⇒θ=2ϕ−2α  β=π−α−θ ⇒β=π−2ϕ+α  ⇒2ϕ=π−(β−α)  ⇒tan 2ϕ=tan (α−β)  ⇒(((2 tan φ)/λ)/(1−((tan^2  φ)/λ^2 )))=((λ tan φ−((λ sin φ)/(μ−cos φ)))/(1+λ tan φ×((λ sin φ)/(μ−cos φ))))  ⇒((2 tan φ)/(λ^2 −tan^2  φ))=((tan φ(μ−cos φ)−sin φ)/(μ−cos φ+λ^2  sin φ tan φ))  ⇒((2 cos φ)/((1+λ^2 )cos^2  φ−1))=((μ−2 cos φ)/(λ^2 +μ cos φ−(1+λ^2 )cos^2  φ))  let t=cos φ  ⇒((2t)/((1+λ^2 )t^2 −1))=((μ−2t)/(λ^2 +μt−(1+λ^2 )t^2 ))  ⇒t^2  −(2/μ)t+(1/(1−λ^2 ))=0  ⇒t=(1/μ)−(√((1/μ^2 )−(1/(1−λ^2 ))))  ⇒φ=cos^(−1) ((1/μ)−(√((1/μ^2 )−(1/(1−λ^2 )))))  ⇒θ_(max) =2[tan^(−1) (((tan φ)/λ))−tan^(−1) (λ tan φ)]  example:  λ=(b/a)=(2/3), μ=(c/a)=(1/2)  ⇒t=2−(√((11)/5))  ⇒φ=cos^(−1) (2−(√((11)/5)))=58.8845°  ⇒α=47.8429°  ⇒ϕ=68.0799°  ⇒β=91.6831°  ⇒θ_(max) =2(68.0799−47.8429)=40.474°

$${let}\:\lambda=\frac{{b}}{{a}},\:\mu=\frac{{c}}{{a}} \\ $$$${P}\left({a}\:\mathrm{cos}\:\phi,\:{b}\:\mathrm{sin}\:\phi\right) \\ $$$$\mathrm{tan}\:\alpha=\frac{{b}}{{a}}\mathrm{tan}\:\phi=\lambda\:\mathrm{tan}\:\phi \\ $$$$\mathrm{tan}\:\varphi=\frac{{a}}{{b}}\mathrm{tan}\:\phi=\frac{\mathrm{tan}\:\phi}{\lambda} \\ $$$$\mathrm{tan}\:\beta=\frac{{b}\:\mathrm{sin}\:\phi}{{c}−{a}\:\mathrm{cos}\:\phi}=\frac{\lambda\:\mathrm{sin}\:\phi}{\mu−\mathrm{cos}\:\phi} \\ $$$$\alpha=\varphi−\frac{\theta}{\mathrm{2}}\:\Rightarrow\theta=\mathrm{2}\varphi−\mathrm{2}\alpha \\ $$$$\beta=\pi−\alpha−\theta\:\Rightarrow\beta=\pi−\mathrm{2}\varphi+\alpha \\ $$$$\Rightarrow\mathrm{2}\varphi=\pi−\left(\beta−\alpha\right) \\ $$$$\Rightarrow\mathrm{tan}\:\mathrm{2}\varphi=\mathrm{tan}\:\left(\alpha−\beta\right) \\ $$$$\Rightarrow\frac{\frac{\mathrm{2}\:\mathrm{tan}\:\phi}{\lambda}}{\mathrm{1}−\frac{\mathrm{tan}^{\mathrm{2}} \:\phi}{\lambda^{\mathrm{2}} }}=\frac{\lambda\:\mathrm{tan}\:\phi−\frac{\lambda\:\mathrm{sin}\:\phi}{\mu−\mathrm{cos}\:\phi}}{\mathrm{1}+\lambda\:\mathrm{tan}\:\phi×\frac{\lambda\:\mathrm{sin}\:\phi}{\mu−\mathrm{cos}\:\phi}} \\ $$$$\Rightarrow\frac{\mathrm{2}\:\mathrm{tan}\:\phi}{\lambda^{\mathrm{2}} −\mathrm{tan}^{\mathrm{2}} \:\phi}=\frac{\mathrm{tan}\:\phi\left(\mu−\mathrm{cos}\:\phi\right)−\mathrm{sin}\:\phi}{\mu−\mathrm{cos}\:\phi+\lambda^{\mathrm{2}} \:\mathrm{sin}\:\phi\:\mathrm{tan}\:\phi} \\ $$$$\Rightarrow\frac{\mathrm{2}\:\mathrm{cos}\:\phi}{\left(\mathrm{1}+\lambda^{\mathrm{2}} \right)\mathrm{cos}^{\mathrm{2}} \:\phi−\mathrm{1}}=\frac{\mu−\mathrm{2}\:\mathrm{cos}\:\phi}{\lambda^{\mathrm{2}} +\mu\:\mathrm{cos}\:\phi−\left(\mathrm{1}+\lambda^{\mathrm{2}} \right)\mathrm{cos}^{\mathrm{2}} \:\phi} \\ $$$${let}\:{t}=\mathrm{cos}\:\phi \\ $$$$\Rightarrow\frac{\mathrm{2}{t}}{\left(\mathrm{1}+\lambda^{\mathrm{2}} \right){t}^{\mathrm{2}} −\mathrm{1}}=\frac{\mu−\mathrm{2}{t}}{\lambda^{\mathrm{2}} +\mu{t}−\left(\mathrm{1}+\lambda^{\mathrm{2}} \right){t}^{\mathrm{2}} } \\ $$$$\Rightarrow{t}^{\mathrm{2}} \:−\frac{\mathrm{2}}{\mu}{t}+\frac{\mathrm{1}}{\mathrm{1}−\lambda^{\mathrm{2}} }=\mathrm{0} \\ $$$$\Rightarrow{t}=\frac{\mathrm{1}}{\mu}−\sqrt{\frac{\mathrm{1}}{\mu^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{1}−\lambda^{\mathrm{2}} }} \\ $$$$\Rightarrow\phi=\mathrm{cos}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mu}−\sqrt{\frac{\mathrm{1}}{\mu^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{1}−\lambda^{\mathrm{2}} }}\right) \\ $$$$\Rightarrow\theta_{{max}} =\mathrm{2}\left[\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{tan}\:\phi}{\lambda}\right)−\mathrm{tan}^{−\mathrm{1}} \left(\lambda\:\mathrm{tan}\:\phi\right)\right] \\ $$$${example}: \\ $$$$\lambda=\frac{{b}}{{a}}=\frac{\mathrm{2}}{\mathrm{3}},\:\mu=\frac{{c}}{{a}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow{t}=\mathrm{2}−\sqrt{\frac{\mathrm{11}}{\mathrm{5}}} \\ $$$$\Rightarrow\phi=\mathrm{cos}^{−\mathrm{1}} \left(\mathrm{2}−\sqrt{\frac{\mathrm{11}}{\mathrm{5}}}\right)=\mathrm{58}.\mathrm{8845}° \\ $$$$\Rightarrow\alpha=\mathrm{47}.\mathrm{8429}° \\ $$$$\Rightarrow\varphi=\mathrm{68}.\mathrm{0799}° \\ $$$$\Rightarrow\beta=\mathrm{91}.\mathrm{6831}° \\ $$$$\Rightarrow\theta_{{max}} =\mathrm{2}\left(\mathrm{68}.\mathrm{0799}−\mathrm{47}.\mathrm{8429}\right)=\mathrm{40}.\mathrm{474}° \\ $$

Commented by ajfour last updated on 28/Nov/19

Thank you Sir. I also get near  around the same value.

$${Thank}\:{you}\:{Sir}.\:{I}\:{also}\:{get}\:{near} \\ $$$${around}\:{the}\:{same}\:{value}. \\ $$

Commented by mr W last updated on 29/Nov/19

thanks sir!  i am not sure if i am right. i think  P should be the reflection point for  a light ray from O to F when θ is  maximum. but for some large values  of c (e.g. c=a) there is no such point  P.  this can be seen in my formula for  φ. we get condition μ≤(√(1−λ^2 ))

$${thanks}\:{sir}! \\ $$$${i}\:{am}\:{not}\:{sure}\:{if}\:{i}\:{am}\:{right}.\:{i}\:{think} \\ $$$${P}\:{should}\:{be}\:{the}\:{reflection}\:{point}\:{for} \\ $$$${a}\:{light}\:{ray}\:{from}\:{O}\:{to}\:{F}\:{when}\:\theta\:{is} \\ $$$${maximum}.\:{but}\:{for}\:{some}\:{large}\:{values} \\ $$$${of}\:{c}\:\left({e}.{g}.\:{c}={a}\right)\:{there}\:{is}\:{no}\:{such}\:{point} \\ $$$${P}.\:\:{this}\:{can}\:{be}\:{seen}\:{in}\:{my}\:{formula}\:{for} \\ $$$$\phi.\:{we}\:{get}\:{condition}\:\mu\leqslant\sqrt{\mathrm{1}−\lambda^{\mathrm{2}} } \\ $$

Commented by ajfour last updated on 29/Nov/19

yes sir, seems likely!

$${yes}\:{sir},\:{seems}\:{likely}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com