Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 74713 by ajfour last updated on 29/Nov/19

Commented by ajfour last updated on 29/Nov/19

If perimeter of △ABC = 18 ,  and area is maximum, find  coordinates of points A, B, C.

IfperimeterofABC=18,andareaismaximum,findcoordinatesofpointsA,B,C.

Answered by mr W last updated on 29/Nov/19

AB=BC=CA=6  y_C =3(√3)  x_C =((9(√3))/4)  x_A =((9(√3))/4)−3  x_B =((9(√3))/4)+3

AB=BC=CA=6yC=33xC=934xA=9343xB=934+3

Commented by mr W last updated on 29/Nov/19

this is only because α≤60°  for α>60° it′s a different triangle shape.

thisisonlybecauseα60°forα>60°itsadifferenttriangleshape.

Commented by ajfour last updated on 29/Nov/19

Its alright Sir, I dint think much.

ItsalrightSir,Idintthinkmuch.

Commented by mr W last updated on 29/Nov/19

Commented by mr W last updated on 30/Nov/19

for α>60°  case 1:  AC=BC=((AB)/(2 cos α))  AB+((AB)/(cos α))=p=18  AB=((p cos α)/(1+cos α))  Area_1 =((AB^2 tan α)/2)=((p^2 sin α cos α)/(2(1+cos α)^2 ))  case 2:  AB=AC  BC=AB sin (α/2)  2AB+AB sin (α/2)=p=18  AB=(p/(2+sin (α/2)))  Area_2 =((AB^2 sin α)/2)=((p^2 sin α)/(2(2+sin (α/2))^2 ))  ((Area_1 )/(Area_2 ))=cos α(((2+sin (α/2))/(1+cos α)))^2   if α≤77.68° case 1 gives maximum area.  if α>77.68° case 2 gives maximum area.

forα>60°case1:AC=BC=AB2cosαAB+ABcosα=p=18AB=pcosα1+cosαArea1=AB2tanα2=p2sinαcosα2(1+cosα)2case2:AB=ACBC=ABsinα22AB+ABsinα2=p=18AB=p2+sinα2Area2=AB2sinα2=p2sinα2(2+sinα2)2Area1Area2=cosα(2+sinα21+cosα)2ifα77.68°case1givesmaximumarea.ifα>77.68°case2givesmaximumarea.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com