Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 74720 by chess1 last updated on 29/Nov/19

Commented by mathmax by abdo last updated on 29/Nov/19

changement (√((x−1)/(x+1))) =t give x−1 =t^2 (x+1) ⇒(1−t^2 )x=1+t^2  ⇒  x=((1+t^2 )/(1−t^2 )) ⇒(dx/dt) =((2t(1−t^2 )−(1+t^2 )(−2t))/((1−t^2 )^2 )) =((2t−2t^3 +2t +2t^3 )/((t^2 −1)^2 ))  =((4t)/((t^2 −1)^2 )) ⇒∫ (√((x−1)/(x+1)))dx =4∫(t^2 /((t^2 −1)^2 ))dt  let decompose  F(t)=(t^2 /((t^2 −1)^2 )) ⇒F(t)=(t^2 /((t+1)^2 (t−1)^2 ))  =(a/(t+1)) +(b/((t+1)^2 )) +(c/(t−1)) +(d/((t−1)^2 ))  F(−t)=F(t) ⇒((−a)/(t−1)) +(b/((t−1)^2 )) −(c/(t+1)) +(d/((t+1)^2 )) =(a/(t+1)) +(b/((t+1)^2 ))  +(c/(t−1)) +(d/((t−1)^2 )) ⇒c=−a and b=d ⇒  F(t)=(a/(t+1)) +(b/((t+1)^2 ))−(a/(t−1)) +(b/((t−1)^2 ))  b=(t+1)^2 F(t)∣_(t=−1) =(1/4) ⇒F(t)=(a/(t+1)) +(1/(4(t+1)^2 ))−(a/(t−1)) +(1/(4(t−1)^2 ))  F(0)=0 =a+(1/4) +a+(1/4) =2a+(1/2) ⇒2a=−(1/2) ⇒a=−(1/4) ⇒  F(t)=(1/(4(t−1)))−(1/(4(t+1))) +(1/(4(t+1)^2 )) +(1/(4(t−1)^2 )) ⇒  ∫(√((x−1)/(x+1)))dx =∫  (dt/(t−1))−∫ (dt/(t+1)) +∫  (dt/((t+1)^2 )) +∫ (dt/((t−1)^2 ))  =ln∣t−1∣−ln∣t+1∣−(1/(t+1))−(1/(t−1)) +C  =ln∣((t−1)/(t+1))∣−((1/(t+1))+(1/(t−1))) +C =ln∣((t−1)/(t+1))∣−((2t)/(t^2 −1)) +C  =ln∣(((√((x−1)/(x+1 )))−1)/((√((x−1)/(x+1)))+1))∣−((2(√((x−1)/(x+1))))/(((x−1)/(x+1))−1)) +C  =ln∣(((√((x−1)/(x+1)))−1)/((√((x−1)/(x+1)))+1))∣ +(x+1)(√((x−1)/(x+1 ))) + C .

changementx1x+1=tgivex1=t2(x+1)(1t2)x=1+t2x=1+t21t2dxdt=2t(1t2)(1+t2)(2t)(1t2)2=2t2t3+2t+2t3(t21)2=4t(t21)2x1x+1dx=4t2(t21)2dtletdecomposeF(t)=t2(t21)2F(t)=t2(t+1)2(t1)2=at+1+b(t+1)2+ct1+d(t1)2F(t)=F(t)at1+b(t1)2ct+1+d(t+1)2=at+1+b(t+1)2+ct1+d(t1)2c=aandb=dF(t)=at+1+b(t+1)2at1+b(t1)2b=(t+1)2F(t)t=1=14F(t)=at+1+14(t+1)2at1+14(t1)2F(0)=0=a+14+a+14=2a+122a=12a=14F(t)=14(t1)14(t+1)+14(t+1)2+14(t1)2x1x+1dx=dtt1dtt+1+dt(t+1)2+dt(t1)2=lnt1lnt+11t+11t1+C=lnt1t+1(1t+1+1t1)+C=lnt1t+12tt21+C=lnx1x+11x1x+1+12x1x+1x1x+11+C=lnx1x+11x1x+1+1+(x+1)x1x+1+C.

Commented by mathmax by abdo last updated on 29/Nov/19

we can simplify we get   ∫  (√((x−1)/(x+1)))dx =ln∣(((√(x−1))−(√(x+1)))/((√(x−1)) +(√(x+1))))∣+(√(x^2 −1)) +C .

wecansimplifywegetx1x+1dx=lnx1x+1x1+x+1+x21+C.

Commented by chess1 last updated on 30/Nov/19

thanks

thanks

Commented by mathmax by abdo last updated on 30/Nov/19

you are welcome.

youarewelcome.

Commented by mathmax by abdo last updated on 06/Dec/19

another way  we use the changement x =ch(2t) ⇒  I =∫(√((ch(2t)−1)/(ch(2t)+1)))2sh(2t)dt =2∫  (√((2sh^2 (t))/(2ch^2 (t))))ch(2t)dt  =2 ∫  th(t)2sh(t)ch(t)dt =4 ∫  ((sh(t))/(ch(t)))sh(t)ch(t)dt  =4 ∫ sh^2 t dt =4 ∫((ch(2t)−1)/2)dt =2 ∫ ch(2t)dt−2t  =sh(2t)−2t +c  =(√(ch^2 (2t)−1)) −argch(x) +c  =(√(x^2 −1)) −ln(x+(√(x^2 −1))) +c

anotherwayweusethechangementx=ch(2t)I=ch(2t)1ch(2t)+12sh(2t)dt=22sh2(t)2ch2(t)ch(2t)dt=2th(t)2sh(t)ch(t)dt=4sh(t)ch(t)sh(t)ch(t)dt=4sh2tdt=4ch(2t)12dt=2ch(2t)dt2t=sh(2t)2t+c=ch2(2t)1argch(x)+c=x21ln(x+x21)+c

Answered by Tanmay chaudhury last updated on 29/Nov/19

∫((x−1)/(√(x^2 −1)))dx  (1/2)∫((d(x^2 −1))/((x^2 −1)^(1/2) ))−∫(dx/(√(x^2 −1)))  I_1 =(1/2)×(((x^2 −1)^(((−1)/2)+1) )/(((−1)/2)+1))+c_1 ⇛(x^2 −1)^(1/2) +c_1   I_2 =∫(dx/(√(x^2 −1)))   let x=secα  dx=secαtanαdα  =∫((secαtanαdα)/(tanα))=∫secαdα=ln(secα+tanα)+c_2   =ln(x+(√(x^2 −1)) )+c_2

x1x21dx12d(x21)(x21)12dxx21I1=12×(x21)12+112+1+c1(x21)12+c1I2=dxx21letx=secαdx=secαtanαdα=secαtanαdαtanα=secαdα=ln(secα+tanα)+c2=ln(x+x21)+c2

Commented by chess1 last updated on 30/Nov/19

thanks

thanks

Answered by Kunal12588 last updated on 30/Nov/19

I=∫(√((x−1)/(x+1)))dx=∫((x−1)/(√(x^2 −1)))dx  =∫(x/(√(x^2 −1)))dx−∫(dx/(√(x^2 −1)))  =(1/2)∫((2x)/(√(x^2 −1)))dx−log∣x+(√(x^2 −1))∣+C  let x^2 −1=t⇒2xdx=dt  I=(1/2)∫(dt/(√t))−log∣x+(√(x^2 −1))∣+C  =(1/2)(((√t)/(1/2)))−log∣x+(√(x^2 −1))∣+C  =(√(x^2 −1))−log∣x+(√(x^2 −1))∣+C

I=x1x+1dx=x1x21dx=xx21dxdxx21=122xx21dxlogx+x21+Cletx21=t2xdx=dtI=12dttlogx+x21+C=12(t1/2)logx+x21+C=x21logx+x21+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com