All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 74723 by necxxx last updated on 29/Nov/19
3xy+x2+y2=5findthesecondderivative
Commented by mathmax by abdo last updated on 29/Nov/19
y2+3xy+x2−5=0Δ=(3x)2−4(x2−5)=9x2−4x2+20=5x2+20⇒y1(x)=−3x+5x2+202andy2(x)=−3x−5x2+202y=y1⇒y′(x)=−32+12×10x25x2+20=−32+52x5x2+20andy(2)(x)=52{x(5x2+20)−12}(1)=52{(5x2+20)−12+x×(−12(10x)(5x2+29)−32}=525x2+20−5x(5x2+20)5x2+20y=y2wefollowthesamemethod...
Answered by Tanmay chaudhury last updated on 29/Nov/19
3xdydx+3y+2x+2y.dydx=0[dydx=−(3y+2x)3x+2y3x×d2ydx2+3dydx+3dydx+2+2y.d2ydx2+2(dydx)2=0plsputvalueofdydxandcalculate
Commented by necxxx last updated on 29/Nov/19
Thankyousomuchsir.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com