Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 74726 by ajfour last updated on 29/Nov/19

Commented by ajfour last updated on 29/Nov/19

Find the sides of the squares,  p, q, r  in terms of a, b, c .

$${Find}\:{the}\:{sides}\:{of}\:{the}\:{squares}, \\ $$$${p},\:{q},\:{r}\:\:{in}\:{terms}\:{of}\:{a},\:{b},\:{c}\:. \\ $$

Commented by mr W last updated on 29/Nov/19

p=(√((2(b^2 +c^2 )−a^2 )/3))  q=(√((2(c^2 +a^2 )−b^2 )/3))  r=(√((2(a^2 +b^2 )−c^2 )/3))

$${p}=\sqrt{\frac{\mathrm{2}\left({b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)−{a}^{\mathrm{2}} }{\mathrm{3}}} \\ $$$${q}=\sqrt{\frac{\mathrm{2}\left({c}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)−{b}^{\mathrm{2}} }{\mathrm{3}}} \\ $$$${r}=\sqrt{\frac{\mathrm{2}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)−{c}^{\mathrm{2}} }{\mathrm{3}}} \\ $$

Commented by ajfour last updated on 29/Nov/19

Great, Sir, please explain, i  dont see a  short way..

$${Great},\:{Sir},\:{please}\:{explain},\:{i} \\ $$$${dont}\:{see}\:{a}\:\:{short}\:{way}.. \\ $$

Answered by mr W last updated on 29/Nov/19

let′s say p, q, r are sides of triangle ABC.   p^2 =q^2 +r^2 −2qr cos A   ...(I)  we have also  a^2 =q^2 +r^2 −2qr cos (π−A)=q^2 +r^2 +2qr cos A   ...(II)  (I)+(II):  ⇒p^2 +a^2 =2(q^2 +r^2 )   ...(i)  similarly  ⇒q^2 +b^2 =2(r^2 +p^2 )   ...(ii)  ⇒r^2 +c^2 =2(p^2 +q^2 )   ...(iii)  (i)+(ii)+(iii):  a^2 +b^2 +c^2 +(p^2 +q^2 +r^2 )=4(p^2 +q^2 +r^2 )  ⇒p^2 +q^2 +r^2 =((a^2 +b^2 +c^2 )/3)    ...(iv)  put (iv) into (i):  ⇒p^2 +a^2 =2(((a^2 +b^2 +c^2 )/3)−p^2 )  ⇒p=(√((2(b^2 +c^2 )−a^2 )/3))  similarly  ⇒q=(√((2(c^2 +a^2 )−b^2 )/3))  ⇒r=(√((2(a^2 +b^2 )−c^2 )/3))

$${let}'{s}\:{say}\:{p},\:{q},\:{r}\:{are}\:{sides}\:{of}\:{triangle}\:{ABC}.\: \\ $$$${p}^{\mathrm{2}} ={q}^{\mathrm{2}} +{r}^{\mathrm{2}} −\mathrm{2}{qr}\:\mathrm{cos}\:{A}\:\:\:...\left({I}\right) \\ $$$${we}\:{have}\:{also} \\ $$$${a}^{\mathrm{2}} ={q}^{\mathrm{2}} +{r}^{\mathrm{2}} −\mathrm{2}{qr}\:\mathrm{cos}\:\left(\pi−{A}\right)={q}^{\mathrm{2}} +{r}^{\mathrm{2}} +\mathrm{2}{qr}\:\mathrm{cos}\:{A}\:\:\:...\left({II}\right) \\ $$$$\left({I}\right)+\left({II}\right): \\ $$$$\Rightarrow{p}^{\mathrm{2}} +{a}^{\mathrm{2}} =\mathrm{2}\left({q}^{\mathrm{2}} +{r}^{\mathrm{2}} \right)\:\:\:...\left({i}\right) \\ $$$${similarly} \\ $$$$\Rightarrow{q}^{\mathrm{2}} +{b}^{\mathrm{2}} =\mathrm{2}\left({r}^{\mathrm{2}} +{p}^{\mathrm{2}} \right)\:\:\:...\left({ii}\right) \\ $$$$\Rightarrow{r}^{\mathrm{2}} +{c}^{\mathrm{2}} =\mathrm{2}\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} \right)\:\:\:...\left({iii}\right) \\ $$$$\left({i}\right)+\left({ii}\right)+\left({iii}\right): \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} \right)=\mathrm{4}\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} \right) \\ $$$$\Rightarrow{p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} =\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }{\mathrm{3}}\:\:\:\:...\left({iv}\right) \\ $$$${put}\:\left({iv}\right)\:{into}\:\left({i}\right): \\ $$$$\Rightarrow{p}^{\mathrm{2}} +{a}^{\mathrm{2}} =\mathrm{2}\left(\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }{\mathrm{3}}−{p}^{\mathrm{2}} \right) \\ $$$$\Rightarrow{p}=\sqrt{\frac{\mathrm{2}\left({b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)−{a}^{\mathrm{2}} }{\mathrm{3}}} \\ $$$${similarly} \\ $$$$\Rightarrow{q}=\sqrt{\frac{\mathrm{2}\left({c}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)−{b}^{\mathrm{2}} }{\mathrm{3}}} \\ $$$$\Rightarrow{r}=\sqrt{\frac{\mathrm{2}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)−{c}^{\mathrm{2}} }{\mathrm{3}}} \\ $$

Commented by ajfour last updated on 29/Nov/19

Wonderful, Sir. I could have  solved it had i proceeded,  you put it in nice details, sir.  Thanks.

$${Wonderful},\:{Sir}.\:{I}\:{could}\:{have} \\ $$$${solved}\:{it}\:{had}\:{i}\:{proceeded}, \\ $$$${you}\:{put}\:{it}\:{in}\:{nice}\:{details},\:{sir}. \\ $$$${Thanks}. \\ $$

Commented by mr W last updated on 30/Nov/19

i′m sure you would come to the same  solution sir.  inspired by this question i have created  a new question about the areas of the  squares. please give a try sir.

$${i}'{m}\:{sure}\:{you}\:{would}\:{come}\:{to}\:{the}\:{same} \\ $$$${solution}\:{sir}. \\ $$$${inspired}\:{by}\:{this}\:{question}\:{i}\:{have}\:{created} \\ $$$${a}\:{new}\:{question}\:{about}\:{the}\:{areas}\:{of}\:{the} \\ $$$${squares}.\:{please}\:{give}\:{a}\:{try}\:{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com