Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 74742 by TawaTawa last updated on 30/Nov/19

If  α and β are the roots of     x^2  − x + 1   =  0,    Find         α^(23)  + β^(23)      without demoivre′s theorem.

Ifαandβaretherootsofx2x+1=0,Findα23+β23withoutdemoivrestheorem.

Commented by abdomathmax last updated on 02/Dec/19

x^2 −x+1=0 →Δ=1−4=−3 ⇒α=((1+i(√3))/2)  and β=((1−i(√3))/2)=α^−   we have x^2 −x+1=0 ⇒  x^2 =x−1 ⇒x^(2n) =(x−1)^n  ⇒x^(2n+1) =x(x−1)^n  ⇒  α^(23) =α^(2×11+1) =α(α−1)^(11)  also  β^(23) =(α^− )^(2×11+1) =α^− (α^− −1)^(11)  ⇒  α^(23)  +β^(23) =α(α−1)^(11)  +α^− (α^− −1)^(11)   =2Re( α(α−1)^(11) )  but  α(α−1)^(11)   =((1+i(√3))/2)(((i(√3)−1)/2))^(11) =(1/2^(12) )(1+i(√3))Σ_(k=0) ^(11) C_(11) ^k (i(√3))^k (−1)^(11−k)   =(1/2^(12) )(1+i(√3)){ Σ_(p=0) ^5  C_(11) ^(2p)   (−1)^p   3^p (−1)^(11−2p)   +Σ_(p=1) ^5  C_(11) ^(2p+1)   i(−1)^p   (√3)×3^p (−1)^(10−2p) }  rest to extract Resl of this quantity....

x2x+1=0Δ=14=3α=1+i32andβ=1i32=αwehavex2x+1=0x2=x1x2n=(x1)nx2n+1=x(x1)nα23=α2×11+1=α(α1)11alsoβ23=(α)2×11+1=α(α1)11α23+β23=α(α1)11+α(α1)11=2Re(α(α1)11)butα(α1)11=1+i32(i312)11=1212(1+i3)k=011C11k(i3)k(1)11k=1212(1+i3){p=05C112p(1)p3p(1)112p+p=15C112p+1i(1)p3×3p(1)102p}resttoextractReslofthisquantity....

Answered by Smail last updated on 30/Nov/19

α=−j and  β=−j^2   (−j)^(23) +(−j^2 )^(23) =−(j^(23) +(j^(46) )  =−(j^(21) j^2 +jj^(45) )=−((j^3 )^7 j^2 +j(j^3 )^(15) )  =−(j^2 +j)=1  Thus, α^(23) +β^(23) =1  with  j=e^(2iπ/3)

α=jandβ=j2(j)23+(j2)23=(j23+(j46)=(j21j2+jj45)=((j3)7j2+j(j3)15)=(j2+j)=1Thus,α23+β23=1withj=e2iπ/3

Commented by TawaTawa last updated on 30/Nov/19

God bless you sir

Godblessyousir

Commented by TawaTawa last updated on 30/Nov/19

But is it possible without complex number and  cube root of unity

Butisitpossiblewithoutcomplexnumberandcuberootofunity

Answered by mind is power last updated on 30/Nov/19

(x+1)(x^2 −x+1)=x^3 +1=0  ⇒α^3 =β^3 =−1  ⇒∀k∈N   α^3 =β^3 =(−1)^k =1 if k≡0(2),−1  else  23=3.7+2  ⇒α^(3.7+2) +β^(3.7+2)   =(−1).α^2 −(β)^2 =−α^2 −β^2   α^2 =−1+α  ,β=−1+β  =−(α+β)+2  α+β=−((−1)/1)=1,som of root  =−1+2=1

(x+1)(x2x+1)=x3+1=0α3=β3=1kNα3=β3=(1)k=1ifk0(2),1else23=3.7+2α3.7+2+β3.7+2=(1).α2(β)2=α2β2α2=1+α,β=1+β=(α+β)+2α+β=11=1,somofroot=1+2=1

Commented by TawaTawa last updated on 30/Nov/19

God bless you sir.

Godblessyousir.

Commented by TawaTawa last updated on 30/Nov/19

Can we use it for:       x^2  − 2x + 4  =  0  Find     α^(23)  + β^(23)

Canweuseitfor:x22x+4=0Findα23+β23

Commented by mind is power last updated on 30/Nov/19

⇔(x^2 /4)−(x/2)+1=0  let Y=(x/2)⇔Y^2 −Y+1=0...E  root of E are   (α/2),(β/2)  by previous Quation  we have ((α/2))^(23) +((β/2))^(23) =1  ⇒α^(23) +β^(23) =2^(23)

x24x2+1=0letY=x2Y2Y+1=0...ErootofEareα2,β2bypreviousQuationwehave(α2)23+(β2)23=1α23+β23=223

Commented by TawaTawa last updated on 30/Nov/19

God bless you sir

Godblessyousir

Commented by TawaTawa last updated on 30/Nov/19

I appreciate sir.

Iappreciatesir.

Commented by TawaTawa last updated on 30/Nov/19

Sir,  is there any way this method cannot be used appart  from complex number ?  Or the method can work for any question ??

Sir,isthereanywaythismethodcannotbeusedappartfromcomplexnumber?Orthemethodcanworkforanyquestion??

Commented by TawaTawa last updated on 30/Nov/19

Something like:    3x^2  + 5x + 7  =  0  Find      α^(23)  + β^(23)

Somethinglike:3x2+5x+7=0Findα23+β23

Commented by mind is power last updated on 30/Nov/19

in this you have too solve Equation and   use complex anslysis  previous one our equation ⇒X^3 =−1 witch redious calclus  ther 3x^2 +5x+7=0  ⇒x=((−5−i(√(59)))/6),x_2 =((−5+i(√(59)))/6),isee no other methode  i will try later

inthisyouhavetoosolveEquationandusecomplexanslysispreviousoneourequationX3=1witchrediouscalclusther3x2+5x+7=0x=5i596,x2=5+i596,iseenoothermethodeiwilltrylater

Commented by TawaTawa last updated on 30/Nov/19

I can use complex number  Help me find other method sir

IcanusecomplexnumberHelpmefindothermethodsir

Commented by TawaTawa last updated on 30/Nov/19

God bless you sir

Godblessyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com