Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 74742 by TawaTawa last updated on 30/Nov/19

If  α and β are the roots of     x^2  − x + 1   =  0,    Find         α^(23)  + β^(23)      without demoivre′s theorem.

$$\mathrm{If}\:\:\alpha\:\mathrm{and}\:\beta\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\:\:\:\:\mathrm{x}^{\mathrm{2}} \:−\:\mathrm{x}\:+\:\mathrm{1}\:\:\:=\:\:\mathrm{0},\:\: \\ $$$$\mathrm{Find}\:\:\:\:\:\:\:\:\:\alpha^{\mathrm{23}} \:+\:\beta^{\mathrm{23}} \:\:\:\:\:\mathrm{without}\:\mathrm{demoivre}'\mathrm{s}\:\mathrm{theorem}. \\ $$

Commented by abdomathmax last updated on 02/Dec/19

x^2 −x+1=0 →Δ=1−4=−3 ⇒α=((1+i(√3))/2)  and β=((1−i(√3))/2)=α^−   we have x^2 −x+1=0 ⇒  x^2 =x−1 ⇒x^(2n) =(x−1)^n  ⇒x^(2n+1) =x(x−1)^n  ⇒  α^(23) =α^(2×11+1) =α(α−1)^(11)  also  β^(23) =(α^− )^(2×11+1) =α^− (α^− −1)^(11)  ⇒  α^(23)  +β^(23) =α(α−1)^(11)  +α^− (α^− −1)^(11)   =2Re( α(α−1)^(11) )  but  α(α−1)^(11)   =((1+i(√3))/2)(((i(√3)−1)/2))^(11) =(1/2^(12) )(1+i(√3))Σ_(k=0) ^(11) C_(11) ^k (i(√3))^k (−1)^(11−k)   =(1/2^(12) )(1+i(√3)){ Σ_(p=0) ^5  C_(11) ^(2p)   (−1)^p   3^p (−1)^(11−2p)   +Σ_(p=1) ^5  C_(11) ^(2p+1)   i(−1)^p   (√3)×3^p (−1)^(10−2p) }  rest to extract Resl of this quantity....

$${x}^{\mathrm{2}} −{x}+\mathrm{1}=\mathrm{0}\:\rightarrow\Delta=\mathrm{1}−\mathrm{4}=−\mathrm{3}\:\Rightarrow\alpha=\frac{\mathrm{1}+{i}\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$${and}\:\beta=\frac{\mathrm{1}−{i}\sqrt{\mathrm{3}}}{\mathrm{2}}=\overset{−} {\alpha}\:\:{we}\:{have}\:{x}^{\mathrm{2}} −{x}+\mathrm{1}=\mathrm{0}\:\Rightarrow \\ $$$${x}^{\mathrm{2}} ={x}−\mathrm{1}\:\Rightarrow{x}^{\mathrm{2}{n}} =\left({x}−\mathrm{1}\right)^{{n}} \:\Rightarrow{x}^{\mathrm{2}{n}+\mathrm{1}} ={x}\left({x}−\mathrm{1}\right)^{{n}} \:\Rightarrow \\ $$$$\alpha^{\mathrm{23}} =\alpha^{\mathrm{2}×\mathrm{11}+\mathrm{1}} =\alpha\left(\alpha−\mathrm{1}\right)^{\mathrm{11}} \:{also} \\ $$$$\beta^{\mathrm{23}} =\left(\overset{−} {\alpha}\right)^{\mathrm{2}×\mathrm{11}+\mathrm{1}} =\overset{−} {\alpha}\left(\overset{−} {\alpha}−\mathrm{1}\right)^{\mathrm{11}} \:\Rightarrow \\ $$$$\alpha^{\mathrm{23}} \:+\beta^{\mathrm{23}} =\alpha\left(\alpha−\mathrm{1}\right)^{\mathrm{11}} \:+\overset{−} {\alpha}\left(\overset{−} {\alpha}−\mathrm{1}\right)^{\mathrm{11}} \\ $$$$=\mathrm{2}{Re}\left(\:\alpha\left(\alpha−\mathrm{1}\right)^{\mathrm{11}} \right)\:\:{but}\:\:\alpha\left(\alpha−\mathrm{1}\right)^{\mathrm{11}} \\ $$$$=\frac{\mathrm{1}+{i}\sqrt{\mathrm{3}}}{\mathrm{2}}\left(\frac{{i}\sqrt{\mathrm{3}}−\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{11}} =\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{12}} }\left(\mathrm{1}+{i}\sqrt{\mathrm{3}}\right)\sum_{{k}=\mathrm{0}} ^{\mathrm{11}} {C}_{\mathrm{11}} ^{{k}} \left({i}\sqrt{\mathrm{3}}\right)^{{k}} \left(−\mathrm{1}\right)^{\mathrm{11}−{k}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{12}} }\left(\mathrm{1}+{i}\sqrt{\mathrm{3}}\right)\left\{\:\sum_{{p}=\mathrm{0}} ^{\mathrm{5}} \:{C}_{\mathrm{11}} ^{\mathrm{2}{p}} \:\:\left(−\mathrm{1}\right)^{{p}} \:\:\mathrm{3}^{{p}} \left(−\mathrm{1}\right)^{\mathrm{11}−\mathrm{2}{p}} \right. \\ $$$$\left.+\sum_{{p}=\mathrm{1}} ^{\mathrm{5}} \:{C}_{\mathrm{11}} ^{\mathrm{2}{p}+\mathrm{1}} \:\:{i}\left(−\mathrm{1}\right)^{{p}} \:\:\sqrt{\mathrm{3}}×\mathrm{3}^{{p}} \left(−\mathrm{1}\right)^{\mathrm{10}−\mathrm{2}{p}} \right\} \\ $$$${rest}\:{to}\:{extract}\:{Resl}\:{of}\:{this}\:{quantity}.... \\ $$

Answered by Smail last updated on 30/Nov/19

α=−j and  β=−j^2   (−j)^(23) +(−j^2 )^(23) =−(j^(23) +(j^(46) )  =−(j^(21) j^2 +jj^(45) )=−((j^3 )^7 j^2 +j(j^3 )^(15) )  =−(j^2 +j)=1  Thus, α^(23) +β^(23) =1  with  j=e^(2iπ/3)

$$\alpha=−{j}\:{and}\:\:\beta=−{j}^{\mathrm{2}} \\ $$$$\left(−{j}\right)^{\mathrm{23}} +\left(−{j}^{\mathrm{2}} \right)^{\mathrm{23}} =−\left({j}^{\mathrm{23}} +\left({j}^{\mathrm{46}} \right)\right. \\ $$$$=−\left({j}^{\mathrm{21}} {j}^{\mathrm{2}} +{jj}^{\mathrm{45}} \right)=−\left(\left({j}^{\mathrm{3}} \right)^{\mathrm{7}} {j}^{\mathrm{2}} +{j}\left({j}^{\mathrm{3}} \right)^{\mathrm{15}} \right) \\ $$$$=−\left({j}^{\mathrm{2}} +{j}\right)=\mathrm{1} \\ $$$${Thus},\:\alpha^{\mathrm{23}} +\beta^{\mathrm{23}} =\mathrm{1}\:\:{with}\:\:{j}={e}^{\mathrm{2}{i}\pi/\mathrm{3}} \\ $$

Commented by TawaTawa last updated on 30/Nov/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented by TawaTawa last updated on 30/Nov/19

But is it possible without complex number and  cube root of unity

$$\mathrm{But}\:\mathrm{is}\:\mathrm{it}\:\mathrm{possible}\:\mathrm{without}\:\mathrm{complex}\:\mathrm{number}\:\mathrm{and} \\ $$$$\mathrm{cube}\:\mathrm{root}\:\mathrm{of}\:\mathrm{unity} \\ $$

Answered by mind is power last updated on 30/Nov/19

(x+1)(x^2 −x+1)=x^3 +1=0  ⇒α^3 =β^3 =−1  ⇒∀k∈N   α^3 =β^3 =(−1)^k =1 if k≡0(2),−1  else  23=3.7+2  ⇒α^(3.7+2) +β^(3.7+2)   =(−1).α^2 −(β)^2 =−α^2 −β^2   α^2 =−1+α  ,β=−1+β  =−(α+β)+2  α+β=−((−1)/1)=1,som of root  =−1+2=1

$$\left(\mathrm{x}+\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{1}\right)=\mathrm{x}^{\mathrm{3}} +\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow\alpha^{\mathrm{3}} =\beta^{\mathrm{3}} =−\mathrm{1} \\ $$$$\Rightarrow\forall\mathrm{k}\in\mathbb{N}\:\:\:\alpha^{\mathrm{3}} =\beta^{\mathrm{3}} =\left(−\mathrm{1}\right)^{\mathrm{k}} =\mathrm{1}\:\mathrm{if}\:\mathrm{k}\equiv\mathrm{0}\left(\mathrm{2}\right),−\mathrm{1}\:\:\mathrm{else} \\ $$$$\mathrm{23}=\mathrm{3}.\mathrm{7}+\mathrm{2} \\ $$$$\Rightarrow\alpha^{\mathrm{3}.\mathrm{7}+\mathrm{2}} +\beta^{\mathrm{3}.\mathrm{7}+\mathrm{2}} \\ $$$$=\left(−\mathrm{1}\right).\alpha^{\mathrm{2}} −\left(\beta\right)^{\mathrm{2}} =−\alpha^{\mathrm{2}} −\beta^{\mathrm{2}} \\ $$$$\alpha^{\mathrm{2}} =−\mathrm{1}+\alpha\:\:,\beta=−\mathrm{1}+\beta \\ $$$$=−\left(\alpha+\beta\right)+\mathrm{2} \\ $$$$\alpha+\beta=−\frac{−\mathrm{1}}{\mathrm{1}}=\mathrm{1},\mathrm{som}\:\mathrm{of}\:\mathrm{root} \\ $$$$=−\mathrm{1}+\mathrm{2}=\mathrm{1} \\ $$$$ \\ $$

Commented by TawaTawa last updated on 30/Nov/19

God bless you sir.

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Commented by TawaTawa last updated on 30/Nov/19

Can we use it for:       x^2  − 2x + 4  =  0  Find     α^(23)  + β^(23)

$$\mathrm{Can}\:\mathrm{we}\:\mathrm{use}\:\mathrm{it}\:\mathrm{for}: \\ $$$$\:\:\:\:\:\mathrm{x}^{\mathrm{2}} \:−\:\mathrm{2x}\:+\:\mathrm{4}\:\:=\:\:\mathrm{0} \\ $$$$\mathrm{Find}\:\:\:\:\:\alpha^{\mathrm{23}} \:+\:\beta^{\mathrm{23}} \\ $$

Commented by mind is power last updated on 30/Nov/19

⇔(x^2 /4)−(x/2)+1=0  let Y=(x/2)⇔Y^2 −Y+1=0...E  root of E are   (α/2),(β/2)  by previous Quation  we have ((α/2))^(23) +((β/2))^(23) =1  ⇒α^(23) +β^(23) =2^(23)

$$\Leftrightarrow\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{4}}−\frac{\mathrm{x}}{\mathrm{2}}+\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{let}\:\mathrm{Y}=\frac{\mathrm{x}}{\mathrm{2}}\Leftrightarrow\mathrm{Y}^{\mathrm{2}} −\mathrm{Y}+\mathrm{1}=\mathrm{0}...\mathrm{E} \\ $$$$\mathrm{root}\:\mathrm{of}\:\mathrm{E}\:\mathrm{are}\:\:\:\frac{\alpha}{\mathrm{2}},\frac{\beta}{\mathrm{2}} \\ $$$$\mathrm{by}\:\mathrm{previous}\:\mathrm{Quation} \\ $$$$\mathrm{we}\:\mathrm{have}\:\left(\frac{\alpha}{\mathrm{2}}\right)^{\mathrm{23}} +\left(\frac{\beta}{\mathrm{2}}\right)^{\mathrm{23}} =\mathrm{1} \\ $$$$\Rightarrow\alpha^{\mathrm{23}} +\beta^{\mathrm{23}} =\mathrm{2}^{\mathrm{23}} \\ $$

Commented by TawaTawa last updated on 30/Nov/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented by TawaTawa last updated on 30/Nov/19

I appreciate sir.

$$\mathrm{I}\:\mathrm{appreciate}\:\mathrm{sir}. \\ $$

Commented by TawaTawa last updated on 30/Nov/19

Sir,  is there any way this method cannot be used appart  from complex number ?  Or the method can work for any question ??

$$\mathrm{Sir},\:\:\mathrm{is}\:\mathrm{there}\:\mathrm{any}\:\mathrm{way}\:\mathrm{this}\:\mathrm{method}\:\mathrm{cannot}\:\mathrm{be}\:\mathrm{used}\:\mathrm{appart} \\ $$$$\mathrm{from}\:\mathrm{complex}\:\mathrm{number}\:? \\ $$$$\mathrm{Or}\:\mathrm{the}\:\mathrm{method}\:\mathrm{can}\:\mathrm{work}\:\mathrm{for}\:\mathrm{any}\:\mathrm{question}\:?? \\ $$

Commented by TawaTawa last updated on 30/Nov/19

Something like:    3x^2  + 5x + 7  =  0  Find      α^(23)  + β^(23)

$$\mathrm{Something}\:\mathrm{like}:\:\:\:\:\mathrm{3x}^{\mathrm{2}} \:+\:\mathrm{5x}\:+\:\mathrm{7}\:\:=\:\:\mathrm{0} \\ $$$$\mathrm{Find}\:\:\:\:\:\:\alpha^{\mathrm{23}} \:+\:\beta^{\mathrm{23}} \\ $$

Commented by mind is power last updated on 30/Nov/19

in this you have too solve Equation and   use complex anslysis  previous one our equation ⇒X^3 =−1 witch redious calclus  ther 3x^2 +5x+7=0  ⇒x=((−5−i(√(59)))/6),x_2 =((−5+i(√(59)))/6),isee no other methode  i will try later

$$\mathrm{in}\:\mathrm{this}\:\mathrm{you}\:\mathrm{have}\:\mathrm{too}\:\mathrm{solve}\:\mathrm{Equation}\:\mathrm{and}\: \\ $$$$\mathrm{use}\:\mathrm{complex}\:\mathrm{anslysis} \\ $$$$\mathrm{previous}\:\mathrm{one}\:\mathrm{our}\:\mathrm{equation}\:\Rightarrow\mathrm{X}^{\mathrm{3}} =−\mathrm{1}\:\mathrm{witch}\:\mathrm{redious}\:\mathrm{calclus} \\ $$$$\mathrm{ther}\:\mathrm{3x}^{\mathrm{2}} +\mathrm{5x}+\mathrm{7}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{x}=\frac{−\mathrm{5}−\mathrm{i}\sqrt{\mathrm{59}}}{\mathrm{6}},\mathrm{x}_{\mathrm{2}} =\frac{−\mathrm{5}+\mathrm{i}\sqrt{\mathrm{59}}}{\mathrm{6}},\mathrm{isee}\:\mathrm{no}\:\mathrm{other}\:\mathrm{methode}\:\:\mathrm{i}\:\mathrm{will}\:\mathrm{try}\:\mathrm{later} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by TawaTawa last updated on 30/Nov/19

I can use complex number  Help me find other method sir

$$\mathrm{I}\:\mathrm{can}\:\mathrm{use}\:\mathrm{complex}\:\mathrm{number} \\ $$$$\mathrm{Help}\:\mathrm{me}\:\mathrm{find}\:\mathrm{other}\:\mathrm{method}\:\mathrm{sir} \\ $$

Commented by TawaTawa last updated on 30/Nov/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com