Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 74748 by mr W last updated on 30/Nov/19

Commented by mr W last updated on 30/Nov/19

If the total area of red squares is A.  Find the total area of the blue squares  and that of the green squares.    Can this be generalised further for the  orange squares as following and so on  to the n−th level squares?

$${If}\:{the}\:{total}\:{area}\:{of}\:{red}\:{squares}\:{is}\:{A}. \\ $$$${Find}\:{the}\:{total}\:{area}\:{of}\:{the}\:{blue}\:{squares} \\ $$$${and}\:{that}\:{of}\:{the}\:{green}\:{squares}. \\ $$$$ \\ $$$${Can}\:{this}\:{be}\:{generalised}\:{further}\:{for}\:{the} \\ $$$${orange}\:{squares}\:{as}\:{following}\:{and}\:{so}\:{on} \\ $$$${to}\:{the}\:{n}−{th}\:{level}\:{squares}? \\ $$

Commented by mr W last updated on 30/Nov/19

Commented by ajfour last updated on 30/Nov/19

Answered by ajfour last updated on 30/Nov/19

O(0,0)  , A(1,0) , B(rcos θ, rsin θ)  let  p=OA=1  q^2 = (−rcos θ+1)^2 +r^2 sin^2 θ  qsin φ=rsin θ  △_0 = 1+r^2 +1+r^2 −2rcos θ        = 2+2r(r−cos θ)  O_1 =(−rsin θ, rcos θ)  O_2 =(0,−1)    A_1 =(1,−1)  A_2 =(1+rsin θ, 1−rcos θ)  B_1 =(rcos θ+rsin θ, 1+rsin θ−rcos θ)  B_2 =(rcos θ−rsin θ, rsin θ+rcos θ)  q_1 ^2 =(O_1 O_2 )^2 = (1+rcos θ)^2 +r^2 sin^2 θ  r_1 ^2 =(A_1 A_2 )^2 = (2−rcos θ)^2 +r^2 sin^2 θ  p_1 ^2 =(B_1 B_2 )^2 =4r^2 sin^2 θ+(2rcos θ−1)^2   △_1 = p_1 ^2 +q_1 ^2 +r_1 ^2        = 6+6r(r−cos θ)  ⇒ △_1 = 6+3(△_0 −2) = 3△_0     ________________________  p_1 ^� =−2rsin θ+i(2rcos θ−1)  q_1 ^� = rsin θ−i(1+rcos θ)  r_1 ^� = rsin θ+i(2−rcos θ)  A_(11) = A_1 −ir_1 ^�         = 1−i−i[rsin θ+i(2−rcos θ)]       = 3−rcos θ−i(1+rsin θ)  O_(22) = O_2 −iq_1 ^�          = −i−i[rsin θ−i(1+rcos θ)]         = −(1+rcos θ)−i(1+rsin θ)  u= O_(22) A_(11) = 4 = 4p  A_(22) =A_2 −ir_1 ^�          = 1+rsin θ+i(1−rcos θ)               −i[rsin θ+i(2−rcos θ)]         = 3+rsin θ−rcos θ                 +i(1−rcos θ−rsin θ)  B_(11) =B_1 −ip_1 ^�          = rcos θ+rsin θ+i(1+rsin θ−rcos θ)              −i[−2rsin θ+i(2rcos θ−1)]         = 3rcos θ−1+rsin θ+i(1+3rsin θ−rcos θ)  v=A_(22) B_(11) =4rcos θ−4+i(4rsin θ)  ∣A_(22) B_(11) ∣=4(√(1+r(r−2cos θ)))  ((∣A_(22) B_(11) ∣)/q)=((4(√(1+r(r−2cos θ))))/(√(1+r(r−2cos θ)))) = 4  ⇒   v= 4q  similary  w= B_(22) O_(11) = 4r  ⇒  Sum of areas of green squares   = △_2 = u^2 +v^2 +w^2               = 16(p^2 +q^2 +r^2 ) = 16△_0  .

$${O}\left(\mathrm{0},\mathrm{0}\right)\:\:,\:{A}\left(\mathrm{1},\mathrm{0}\right)\:,\:{B}\left({r}\mathrm{cos}\:\theta,\:{r}\mathrm{sin}\:\theta\right) \\ $$$${let}\:\:{p}={OA}=\mathrm{1} \\ $$$${q}^{\mathrm{2}} =\:\left(−{r}\mathrm{cos}\:\theta+\mathrm{1}\right)^{\mathrm{2}} +{r}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta \\ $$$${q}\mathrm{sin}\:\phi={r}\mathrm{sin}\:\theta \\ $$$$\bigtriangleup_{\mathrm{0}} =\:\mathrm{1}+{r}^{\mathrm{2}} +\mathrm{1}+{r}^{\mathrm{2}} −\mathrm{2}{r}\mathrm{cos}\:\theta \\ $$$$\:\:\:\:\:\:=\:\mathrm{2}+\mathrm{2}{r}\left({r}−\mathrm{cos}\:\theta\right) \\ $$$${O}_{\mathrm{1}} =\left(−{r}\mathrm{sin}\:\theta,\:{r}\mathrm{cos}\:\theta\right) \\ $$$${O}_{\mathrm{2}} =\left(\mathrm{0},−\mathrm{1}\right)\:\: \\ $$$${A}_{\mathrm{1}} =\left(\mathrm{1},−\mathrm{1}\right) \\ $$$${A}_{\mathrm{2}} =\left(\mathrm{1}+{r}\mathrm{sin}\:\theta,\:\mathrm{1}−{r}\mathrm{cos}\:\theta\right) \\ $$$${B}_{\mathrm{1}} =\left({r}\mathrm{cos}\:\theta+{r}\mathrm{sin}\:\theta,\:\mathrm{1}+{r}\mathrm{sin}\:\theta−{r}\mathrm{cos}\:\theta\right) \\ $$$${B}_{\mathrm{2}} =\left({r}\mathrm{cos}\:\theta−{r}\mathrm{sin}\:\theta,\:{r}\mathrm{sin}\:\theta+{r}\mathrm{cos}\:\theta\right) \\ $$$${q}_{\mathrm{1}} ^{\mathrm{2}} =\left({O}_{\mathrm{1}} {O}_{\mathrm{2}} \right)^{\mathrm{2}} =\:\left(\mathrm{1}+{r}\mathrm{cos}\:\theta\right)^{\mathrm{2}} +{r}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta \\ $$$${r}_{\mathrm{1}} ^{\mathrm{2}} =\left({A}_{\mathrm{1}} {A}_{\mathrm{2}} \right)^{\mathrm{2}} =\:\left(\mathrm{2}−{r}\mathrm{cos}\:\theta\right)^{\mathrm{2}} +{r}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta \\ $$$${p}_{\mathrm{1}} ^{\mathrm{2}} =\left({B}_{\mathrm{1}} {B}_{\mathrm{2}} \right)^{\mathrm{2}} =\mathrm{4}{r}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta+\left(\mathrm{2}{r}\mathrm{cos}\:\theta−\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\bigtriangleup_{\mathrm{1}} =\:{p}_{\mathrm{1}} ^{\mathrm{2}} +{q}_{\mathrm{1}} ^{\mathrm{2}} +{r}_{\mathrm{1}} ^{\mathrm{2}} \\ $$$$\:\:\:\:\:=\:\mathrm{6}+\mathrm{6}{r}\left({r}−\mathrm{cos}\:\theta\right) \\ $$$$\Rightarrow\:\bigtriangleup_{\mathrm{1}} =\:\mathrm{6}+\mathrm{3}\left(\bigtriangleup_{\mathrm{0}} −\mathrm{2}\right)\:=\:\mathrm{3}\bigtriangleup_{\mathrm{0}} \:\: \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$$$\bar {{p}}_{\mathrm{1}} =−\mathrm{2}{r}\mathrm{sin}\:\theta+{i}\left(\mathrm{2}{r}\mathrm{cos}\:\theta−\mathrm{1}\right) \\ $$$$\bar {{q}}_{\mathrm{1}} =\:{r}\mathrm{sin}\:\theta−{i}\left(\mathrm{1}+{r}\mathrm{cos}\:\theta\right) \\ $$$$\bar {{r}}_{\mathrm{1}} =\:{r}\mathrm{sin}\:\theta+{i}\left(\mathrm{2}−{r}\mathrm{cos}\:\theta\right) \\ $$$${A}_{\mathrm{11}} =\:{A}_{\mathrm{1}} −{i}\bar {{r}}_{\mathrm{1}} \\ $$$$\:\:\:\:\:\:=\:\mathrm{1}−{i}−{i}\left[{r}\mathrm{sin}\:\theta+{i}\left(\mathrm{2}−{r}\mathrm{cos}\:\theta\right)\right] \\ $$$$\:\:\:\:\:=\:\mathrm{3}−{r}\mathrm{cos}\:\theta−{i}\left(\mathrm{1}+{r}\mathrm{sin}\:\theta\right) \\ $$$${O}_{\mathrm{22}} =\:{O}_{\mathrm{2}} −{i}\bar {{q}}_{\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:=\:−{i}−{i}\left[{r}\mathrm{sin}\:\theta−{i}\left(\mathrm{1}+{r}\mathrm{cos}\:\theta\right)\right] \\ $$$$\:\:\:\:\:\:\:=\:−\left(\mathrm{1}+{r}\mathrm{cos}\:\theta\right)−{i}\left(\mathrm{1}+{r}\mathrm{sin}\:\theta\right) \\ $$$${u}=\:{O}_{\mathrm{22}} {A}_{\mathrm{11}} =\:\mathrm{4}\:=\:\mathrm{4}{p} \\ $$$${A}_{\mathrm{22}} ={A}_{\mathrm{2}} −{i}\bar {{r}}_{\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:=\:\mathrm{1}+{r}\mathrm{sin}\:\theta+{i}\left(\mathrm{1}−{r}\mathrm{cos}\:\theta\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:−{i}\left[{r}\mathrm{sin}\:\theta+{i}\left(\mathrm{2}−{r}\mathrm{cos}\:\theta\right)\right] \\ $$$$\:\:\:\:\:\:\:=\:\mathrm{3}+{r}\mathrm{sin}\:\theta−{r}\mathrm{cos}\:\theta \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+{i}\left(\mathrm{1}−{r}\mathrm{cos}\:\theta−{r}\mathrm{sin}\:\theta\right) \\ $$$${B}_{\mathrm{11}} ={B}_{\mathrm{1}} −{i}\bar {{p}}_{\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:=\:{r}\mathrm{cos}\:\theta+{r}\mathrm{sin}\:\theta+{i}\left(\mathrm{1}+{r}\mathrm{sin}\:\theta−{r}\mathrm{cos}\:\theta\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:−{i}\left[−\mathrm{2}{r}\mathrm{sin}\:\theta+{i}\left(\mathrm{2}{r}\mathrm{cos}\:\theta−\mathrm{1}\right)\right] \\ $$$$\:\:\:\:\:\:\:=\:\mathrm{3}{r}\mathrm{cos}\:\theta−\mathrm{1}+{r}\mathrm{sin}\:\theta+{i}\left(\mathrm{1}+\mathrm{3}{r}\mathrm{sin}\:\theta−{r}\mathrm{cos}\:\theta\right) \\ $$$${v}={A}_{\mathrm{22}} {B}_{\mathrm{11}} =\mathrm{4}{r}\mathrm{cos}\:\theta−\mathrm{4}+{i}\left(\mathrm{4}{r}\mathrm{sin}\:\theta\right) \\ $$$$\mid{A}_{\mathrm{22}} {B}_{\mathrm{11}} \mid=\mathrm{4}\sqrt{\mathrm{1}+{r}\left({r}−\mathrm{2cos}\:\theta\right)} \\ $$$$\frac{\mid{A}_{\mathrm{22}} {B}_{\mathrm{11}} \mid}{{q}}=\frac{\mathrm{4}\sqrt{\mathrm{1}+{r}\left({r}−\mathrm{2cos}\:\theta\right)}}{\sqrt{\mathrm{1}+{r}\left({r}−\mathrm{2cos}\:\theta\right)}}\:=\:\mathrm{4} \\ $$$$\Rightarrow\:\:\:{v}=\:\mathrm{4}{q} \\ $$$${similary}\:\:{w}=\:{B}_{\mathrm{22}} {O}_{\mathrm{11}} =\:\mathrm{4}{r} \\ $$$$\Rightarrow\:\:{Sum}\:{of}\:{areas}\:{of}\:{green}\:{squares} \\ $$$$\:=\:\bigtriangleup_{\mathrm{2}} =\:{u}^{\mathrm{2}} +{v}^{\mathrm{2}} +{w}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{16}\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} \right)\:=\:\mathrm{16}\bigtriangleup_{\mathrm{0}} \:. \\ $$

Commented by mr W last updated on 30/Nov/19

thank you sir! it′s a nice solution.

$${thank}\:{you}\:{sir}!\:{it}'{s}\:{a}\:{nice}\:{solution}. \\ $$

Commented by mr W last updated on 01/Dec/19

Δ_1 =3Δ_0   Δ_2 =16Δ_0    (p=4)  Δ_3 =75Δ_0   Δ_4 =361Δ_0    (p=19)  .....  Δ_n =?Δ_0

$$\Delta_{\mathrm{1}} =\mathrm{3}\Delta_{\mathrm{0}} \\ $$$$\Delta_{\mathrm{2}} =\mathrm{16}\Delta_{\mathrm{0}} \:\:\:\left({p}=\mathrm{4}\right) \\ $$$$\Delta_{\mathrm{3}} =\mathrm{75}\Delta_{\mathrm{0}} \\ $$$$\Delta_{\mathrm{4}} =\mathrm{361}\Delta_{\mathrm{0}} \:\:\:\left({p}=\mathrm{19}\right) \\ $$$$..... \\ $$$$\Delta_{{n}} =?\Delta_{\mathrm{0}} \\ $$

Commented by mr W last updated on 01/Dec/19

Commented by mr W last updated on 01/Dec/19

red, green, pink, .... squares are similar.  blue, yellow,... squares are similar.

$${red},\:{green},\:{pink},\:....\:{squares}\:{are}\:{similar}. \\ $$$${blue},\:{yellow},...\:{squares}\:{are}\:{similar}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com