Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 74794 by mathmax by abdo last updated on 30/Nov/19

let A = (((1          2)),((−1        1)) )  1) calculate A^n   2) find  e^A  and e^(−A)   3) calculate  cosA and sinA  4) calculate  ch(A) and sh(A)

$${let}\:{A}\:=\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\:\:\:\:\mathrm{2}}\\{−\mathrm{1}\:\:\:\:\:\:\:\:\mathrm{1}}\end{pmatrix} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}^{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\:{e}^{{A}} \:{and}\:{e}^{−{A}} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\:{cosA}\:{and}\:{sinA} \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:\:{ch}\left({A}\right)\:{and}\:{sh}\left({A}\right) \\ $$

Commented by Cmr 237 last updated on 01/Dec/19

1) calcul de A^n   on a le polynome caracteristique est  P(λ)=det(A−λI_2 )            =λ^2 −2λ+3  deplus on a:  P(λ)=0⇒λ_1 =1−i(√2),λ_2 =1+i(√2)  on remarque que P(A)=0  donc ∀X∈K[X] on a:  X^n =Q(X)P(X)+a_n X+b_n   ou Q(X)  est un polynome quotient ..  λ_1 ^n =Q(λ_1 )P(λ_1 )+a_n λ_1 +b_n   λ_2 ^n =Q(λ_2 )P(λ_2 )+a_n λ_2 +b_n    { ((a_n λ_1 +b_n =λ_(1 ) ^n )),((a_n λ_2 +b_n =λ_2 ^n  )) :}   a_n =((λ_2 ^n −λ_1 ^n )/(λ_2 −λ_1 ))=(((1+i(√2))^n −(1−i(√2))^n )/(2i(√2)))  b_n =((3(λ_1 ^(n−1) −λ_2 ^(n−1) ))/(2i(√2)))  A^n =Q(A)P(A)+a_n A+b_n I_2   =a_n A+b_n I_2   A^n = (((a_n    2a_n )),((−a_n   a_n )) )+ (((b_n    0)),((0      b_n )) )  = (((a_n +b_(n            ) 2a_n )),((−a_(n )          a_n +b_n )) ) ou a_(n  ) et b_n  sont les suites donnees en haut  2) calcul de e^A et e^(−A)   e^A =Σ_(k=0) ^n (A^k /(k!))  e^(−A) =Σ_(k=0) ^n (A^(−k) /(k!))  3)calcul de cosA et sinA  cosA=Σ_(k=0) ^n (((−1)^k A^(2k) )/((2k)!))  sinA=Σ_(k=0) ^n (((−1)^k A^(2k+1) )/((2k+1)!))  4) calcul de chA et shA  chA=Σ_(k=0) ^n (A^(2k) /((2k)!))  shA=Σ_(k=0) ^n (A^(2k+1) /((2k+1)!))  NB:e^A ,e^(−A)  ,cosA,sinA,chA,shA  sont sur la forme generale car ∀ n∈N^∗ ,A^n ≠0

$$\left.\mathrm{1}\right)\:{calcul}\:{de}\:{A}^{{n}} \\ $$$${on}\:{a}\:{le}\:{polynome}\:{caracteristique}\:{est} \\ $$$${P}\left(\lambda\right)={det}\left({A}−\lambda{I}_{\mathrm{2}} \right) \\ $$$$\:\:\:\:\:\:\:\:\:\:=\lambda^{\mathrm{2}} −\mathrm{2}\lambda+\mathrm{3} \\ $$$${deplus}\:{on}\:{a}: \\ $$$${P}\left(\lambda\right)=\mathrm{0}\Rightarrow\lambda_{\mathrm{1}} =\mathrm{1}−{i}\sqrt{\mathrm{2}},\lambda_{\mathrm{2}} =\mathrm{1}+{i}\sqrt{\mathrm{2}} \\ $$$${on}\:{remarque}\:{que}\:{P}\left({A}\right)=\mathrm{0} \\ $$$${donc}\:\forall{X}\in{K}\left[{X}\right]\:{on}\:{a}: \\ $$$${X}^{{n}} ={Q}\left({X}\right){P}\left({X}\right)+{a}_{{n}} {X}+{b}_{{n}} \\ $$$${ou}\:{Q}\left({X}\right)\:\:{est}\:{un}\:{polynome}\:{quotient}\:.. \\ $$$$\lambda_{\mathrm{1}} ^{{n}} ={Q}\left(\lambda_{\mathrm{1}} \right){P}\left(\lambda_{\mathrm{1}} \right)+{a}_{{n}} \lambda_{\mathrm{1}} +{b}_{{n}} \\ $$$$\lambda_{\mathrm{2}} ^{{n}} ={Q}\left(\lambda_{\mathrm{2}} \right){P}\left(\lambda_{\mathrm{2}} \right)+{a}_{{n}} \lambda_{\mathrm{2}} +{b}_{{n}} \\ $$$$\begin{cases}{{a}_{{n}} \lambda_{\mathrm{1}} +{b}_{{n}} =\lambda_{\mathrm{1}\:} ^{{n}} }\\{{a}_{{n}} \lambda_{\mathrm{2}} +{b}_{{n}} =\lambda_{\mathrm{2}} ^{{n}} \:}\end{cases} \\ $$$$\:{a}_{{n}} =\frac{\lambda_{\mathrm{2}} ^{{n}} −\lambda_{\mathrm{1}} ^{{n}} }{\lambda_{\mathrm{2}} −\lambda_{\mathrm{1}} }=\frac{\left(\mathrm{1}+{i}\sqrt{\mathrm{2}}\right)^{{n}} −\left(\mathrm{1}−{i}\sqrt{\mathrm{2}}\right)^{{n}} }{\mathrm{2}{i}\sqrt{\mathrm{2}}} \\ $$$${b}_{{n}} =\frac{\mathrm{3}\left(\lambda_{\mathrm{1}} ^{{n}−\mathrm{1}} −\lambda_{\mathrm{2}} ^{{n}−\mathrm{1}} \right)}{\mathrm{2}{i}\sqrt{\mathrm{2}}} \\ $$$${A}^{{n}} ={Q}\left({A}\right){P}\left({A}\right)+{a}_{{n}} {A}+{b}_{{n}} {I}_{\mathrm{2}} \\ $$$$={a}_{{n}} {A}+{b}_{{n}} {I}_{\mathrm{2}} \\ $$$${A}^{{n}} =\begin{pmatrix}{{a}_{{n}} \:\:\:\mathrm{2}{a}_{{n}} }\\{−{a}_{{n}} \:\:{a}_{{n}} }\end{pmatrix}+\begin{pmatrix}{{b}_{{n}} \:\:\:\mathrm{0}}\\{\mathrm{0}\:\:\:\:\:\:{b}_{{n}} }\end{pmatrix} \\ $$$$=\begin{pmatrix}{{a}_{{n}} +{b}_{{n}\:\:\:\:\:\:\:\:\:\:\:\:} \mathrm{2}{a}_{{n}} }\\{−{a}_{{n}\:} \:\:\:\:\:\:\:\:\:{a}_{{n}} +{b}_{{n}} }\end{pmatrix}\:{ou}\:{a}_{{n}\:\:} {et}\:{b}_{{n}} \:{sont}\:{les}\:{suites}\:{donnees}\:{en}\:{haut} \\ $$$$\left.\mathrm{2}\right)\:{calcul}\:{de}\:{e}^{{A}} {et}\:{e}^{−{A}} \\ $$$${e}^{{A}} =\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{{A}^{{k}} }{{k}!} \\ $$$${e}^{−{A}} =\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{{A}^{−{k}} }{{k}!} \\ $$$$\left.\mathrm{3}\right){calcul}\:{de}\:{cosA}\:{et}\:{sinA} \\ $$$${cosA}=\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{\left(−\mathrm{1}\right)^{{k}} \mathrm{A}^{\mathrm{2}{k}} }{\left(\mathrm{2}{k}\right)!} \\ $$$${sinA}=\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{\left(−\mathrm{1}\right)^{{k}} {A}^{\mathrm{2}{k}+\mathrm{1}} }{\left(\mathrm{2}{k}+\mathrm{1}\right)!} \\ $$$$\left.\mathrm{4}\right)\:{calcul}\:{de}\:{chA}\:{et}\:{shA} \\ $$$${chA}=\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{{A}^{\mathrm{2}{k}} }{\left(\mathrm{2}{k}\right)!} \\ $$$${shA}=\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{{A}^{\mathrm{2}{k}+\mathrm{1}} }{\left(\mathrm{2}{k}+\mathrm{1}\right)!} \\ $$$${NB}:{e}^{{A}} ,{e}^{−{A}} \:,{cosA},{sinA},{chA},{shA} \\ $$$${sont}\:{sur}\:{la}\:{forme}\:{generale}\:{car}\:\forall\:{n}\in\boldsymbol{{N}}^{\ast} ,{A}^{{n}} \neq\mathrm{0} \\ $$

Commented by mathmax by abdo last updated on 01/Dec/19

1)we have P_c (x)=det(A−xI)= determinant (((1−x          2)),((−1         1−x)))  =(1−x)^2 +2 =x^2 −2x +3  Δ^′ =(−1)^2 −3 =1−3=−2 ⇒λ_1 =1+i(√2) and λ_2 =1−i(√2)  cayley hamilton give  P_c (A)=0 let divide x^n  by x^2 −2x+3 ⇒  x^n =q(x)P_c (x)+a_n x +b_n   ⇒λ_1 ^n =a_n λ_1 +b_n   λ_2 ^n  =a_n λ_2  +b_n   so we get the systeme    { ((λ_1 a_n +b_n =λ_1 ^n )),((λ_2 a_n +b_n =λ_2 ^n )) :}  ⇒(λ_1 −λ_2 )a_n =λ_1 ^n −λ_2 ^n  ⇒a_n =((λ_1 ^n  −(λ_1 ^− )^n )/(λ_1 −λ_2 )) =((2i Im(λ_1 ^n ))/(2i(√2)))  =(1/(√2)) Im(λ_1 ^n )  we have ∣λ_1 ∣ =(√(1+2))=(√3) ⇒λ_1 =(√3)e^(iarctan((√2)))  ⇒  a_n =((((√3))^n )/(√2)) sin(narctan((√2)) and b_n =λ_1 ^n −λ_1 a_n   =λ_1 ^n −λ_1  ((λ_1 ^n −λ_2 ^n )/(λ_1 −λ_2 )) =((λ_1 ^(n+1) −λ_2 λ_1 ^n −λ_1 ^(n+1) +λ_1 λ_2 ^n )/(λ_1 −λ_2 ))  =((λ1λ_2 )/(λ_1 −λ_2 )){ λ_1 ^(n−1) −(λ_1 ^− )^(n−1) } =(3/(2i (√2))) (2i ((√3))^(n−1)  sin((n−1)arctan((√2)))  =((((√3))^(n+1) )/(√2))  sin{(n−1)arctan((√2)))  we have A^n =a_n A +b_n  I  =((((√3))^n )/(√2))sin(narctan((√2))) (((1         2)),((−1     1)) )  +((((√3))^(n+1) )/(√2))sin{(n−1)arctan((√2))) (((1      0)),((0       1)) )

$$\left.\mathrm{1}\right){we}\:{have}\:{P}_{{c}} \left({x}\right)={det}\left({A}−{xI}\right)=\begin{vmatrix}{\mathrm{1}−{x}\:\:\:\:\:\:\:\:\:\:\mathrm{2}}\\{−\mathrm{1}\:\:\:\:\:\:\:\:\:\mathrm{1}−{x}}\end{vmatrix} \\ $$$$=\left(\mathrm{1}−{x}\right)^{\mathrm{2}} +\mathrm{2}\:={x}^{\mathrm{2}} −\mathrm{2}{x}\:+\mathrm{3} \\ $$$$\Delta^{'} =\left(−\mathrm{1}\right)^{\mathrm{2}} −\mathrm{3}\:=\mathrm{1}−\mathrm{3}=−\mathrm{2}\:\Rightarrow\lambda_{\mathrm{1}} =\mathrm{1}+{i}\sqrt{\mathrm{2}}\:{and}\:\lambda_{\mathrm{2}} =\mathrm{1}−{i}\sqrt{\mathrm{2}} \\ $$$${cayley}\:{hamilton}\:{give}\:\:{P}_{{c}} \left({A}\right)=\mathrm{0}\:{let}\:{divide}\:{x}^{{n}} \:{by}\:{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{3}\:\Rightarrow \\ $$$${x}^{{n}} ={q}\left({x}\right){P}_{{c}} \left({x}\right)+{a}_{{n}} {x}\:+{b}_{{n}} \:\:\Rightarrow\lambda_{\mathrm{1}} ^{{n}} ={a}_{{n}} \lambda_{\mathrm{1}} +{b}_{{n}} \\ $$$$\lambda_{\mathrm{2}} ^{{n}} \:={a}_{{n}} \lambda_{\mathrm{2}} \:+{b}_{{n}} \:\:{so}\:{we}\:{get}\:{the}\:{systeme}\:\:\:\begin{cases}{\lambda_{\mathrm{1}} {a}_{{n}} +{b}_{{n}} =\lambda_{\mathrm{1}} ^{{n}} }\\{\lambda_{\mathrm{2}} {a}_{{n}} +{b}_{{n}} =\lambda_{\mathrm{2}} ^{{n}} }\end{cases} \\ $$$$\Rightarrow\left(\lambda_{\mathrm{1}} −\lambda_{\mathrm{2}} \right){a}_{{n}} =\lambda_{\mathrm{1}} ^{{n}} −\lambda_{\mathrm{2}} ^{{n}} \:\Rightarrow{a}_{{n}} =\frac{\lambda_{\mathrm{1}} ^{{n}} \:−\left(\overset{−} {\lambda}_{\mathrm{1}} \right)^{{n}} }{\lambda_{\mathrm{1}} −\lambda_{\mathrm{2}} }\:=\frac{\mathrm{2}{i}\:{Im}\left(\lambda_{\mathrm{1}} ^{{n}} \right)}{\mathrm{2}{i}\sqrt{\mathrm{2}}} \\ $$$$=\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:{Im}\left(\lambda_{\mathrm{1}} ^{{n}} \right)\:\:{we}\:{have}\:\mid\lambda_{\mathrm{1}} \mid\:=\sqrt{\mathrm{1}+\mathrm{2}}=\sqrt{\mathrm{3}}\:\Rightarrow\lambda_{\mathrm{1}} =\sqrt{\mathrm{3}}{e}^{{iarctan}\left(\sqrt{\mathrm{2}}\right)} \:\Rightarrow \\ $$$${a}_{{n}} =\frac{\left(\sqrt{\mathrm{3}}\right)^{{n}} }{\sqrt{\mathrm{2}}}\:{sin}\left({narctan}\left(\sqrt{\mathrm{2}}\right)\:{and}\:{b}_{{n}} =\lambda_{\mathrm{1}} ^{{n}} −\lambda_{\mathrm{1}} {a}_{{n}} \right. \\ $$$$=\lambda_{\mathrm{1}} ^{{n}} −\lambda_{\mathrm{1}} \:\frac{\lambda_{\mathrm{1}} ^{{n}} −\lambda_{\mathrm{2}} ^{{n}} }{\lambda_{\mathrm{1}} −\lambda_{\mathrm{2}} }\:=\frac{\lambda_{\mathrm{1}} ^{{n}+\mathrm{1}} −\lambda_{\mathrm{2}} \lambda_{\mathrm{1}} ^{{n}} −\lambda_{\mathrm{1}} ^{{n}+\mathrm{1}} +\lambda_{\mathrm{1}} \lambda_{\mathrm{2}} ^{{n}} }{\lambda_{\mathrm{1}} −\lambda_{\mathrm{2}} } \\ $$$$=\frac{\lambda\mathrm{1}\lambda_{\mathrm{2}} }{\lambda_{\mathrm{1}} −\lambda_{\mathrm{2}} }\left\{\:\lambda_{\mathrm{1}} ^{{n}−\mathrm{1}} −\left(\overset{−} {\lambda}_{\mathrm{1}} \right)^{{n}−\mathrm{1}} \right\}\:=\frac{\mathrm{3}}{\mathrm{2}{i}\:\sqrt{\mathrm{2}}}\:\left(\mathrm{2}{i}\:\left(\sqrt{\mathrm{3}}\right)^{{n}−\mathrm{1}} \:{sin}\left(\left({n}−\mathrm{1}\right){arctan}\left(\sqrt{\mathrm{2}}\right)\right)\right. \\ $$$$=\frac{\left(\sqrt{\mathrm{3}}\right)^{{n}+\mathrm{1}} }{\sqrt{\mathrm{2}}}\:\:{sin}\left\{\left({n}−\mathrm{1}\right){arctan}\left(\sqrt{\mathrm{2}}\right)\right) \\ $$$${we}\:{have}\:{A}^{{n}} ={a}_{{n}} {A}\:+{b}_{{n}} \:{I} \\ $$$$=\frac{\left(\sqrt{\mathrm{3}}\right)^{{n}} }{\sqrt{\mathrm{2}}}{sin}\left({narctan}\left(\sqrt{\mathrm{2}}\right)\right)\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\:\:\:\mathrm{2}}\\{−\mathrm{1}\:\:\:\:\:\mathrm{1}}\end{pmatrix}\:\:+\frac{\left(\sqrt{\mathrm{3}}\right)^{{n}+\mathrm{1}} }{\sqrt{\mathrm{2}}}{sin}\left\{\left({n}−\mathrm{1}\right){arctan}\left(\sqrt{\mathrm{2}}\right)\right)\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\mathrm{0}}\\{\mathrm{0}\:\:\:\:\:\:\:\mathrm{1}}\end{pmatrix} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com