Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 74795 by mathmax by abdo last updated on 30/Nov/19

study the convergence of Σ (1/(nH_n ))  with H_n =Σ_(k=1) ^n  (1/k)

$${study}\:{the}\:{convergence}\:{of}\:\Sigma\:\frac{\mathrm{1}}{{nH}_{{n}} } \\ $$$${with}\:{H}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}} \\ $$

Commented by mathmax by abdo last updated on 01/Dec/19

we have  H_n ∼ ln(n)   (n→+∞) ⇒(1/(n H_n )) ∼ (1/(nln(n)))  let U_n =(1/(nln(n)))  we have  U_n  decrease to 0  so ∫_2 ^(+∞)  (dt/(tln(t))) and  Σ U_n  have same nature   changement ln(t)=u give  ∫_2 ^(+∞)  (dt/(tln(t))) =∫_(ln(2)) ^(+∞)    ((e^u  du)/(e^u  u)) =∫_(ln(2)) ^(+∞)  (du/u) =+∞ ⇒Σ U_n diverges ⇒  Σ (1/(nH_n ))  diverges.

$${we}\:{have}\:\:{H}_{{n}} \sim\:{ln}\left({n}\right)\:\:\:\left({n}\rightarrow+\infty\right)\:\Rightarrow\frac{\mathrm{1}}{{n}\:{H}_{{n}} }\:\sim\:\frac{\mathrm{1}}{{nln}\left({n}\right)} \\ $$$${let}\:{U}_{{n}} =\frac{\mathrm{1}}{{nln}\left({n}\right)}\:\:{we}\:{have}\:\:{U}_{{n}} \:{decrease}\:{to}\:\mathrm{0}\:\:{so}\:\int_{\mathrm{2}} ^{+\infty} \:\frac{{dt}}{{tln}\left({t}\right)}\:{and} \\ $$$$\Sigma\:{U}_{{n}} \:{have}\:{same}\:{nature}\:\:\:{changement}\:{ln}\left({t}\right)={u}\:{give} \\ $$$$\int_{\mathrm{2}} ^{+\infty} \:\frac{{dt}}{{tln}\left({t}\right)}\:=\int_{{ln}\left(\mathrm{2}\right)} ^{+\infty} \:\:\:\frac{{e}^{{u}} \:{du}}{{e}^{{u}} \:{u}}\:=\int_{{ln}\left(\mathrm{2}\right)} ^{+\infty} \:\frac{{du}}{{u}}\:=+\infty\:\Rightarrow\Sigma\:{U}_{{n}} {diverges}\:\Rightarrow \\ $$$$\Sigma\:\frac{\mathrm{1}}{{nH}_{{n}} }\:\:{diverges}. \\ $$

Answered by mind is power last updated on 01/Dec/19

Σ(1/(nH_n ))  H_n =Σ_(k=1) ^n (1/k)         (1/(k+1))≤∫_k ^(k+1) (1/t)≤(1/k)  ⇒Σ_(k=1) ^n (1/(k+1))≤ln(n+1)≤H_n   ⇒H_n ≥ln(n+1)⇒(1/(nH_n ))≤(1/(nln(n+1)))     H_(n+1) −1≤ln(n+1)  H_n ≤ln(n)+1⇒(1/(nH_n ))≥(1/(nln(n)+n))  ⇒Σ(1/(nH_n ))≥Σ_(n≥1) (1/(n(ln(n)+1)))→+∞

$$\Sigma\frac{\mathrm{1}}{\mathrm{nH}_{\mathrm{n}} } \\ $$$$\mathrm{H}_{\mathrm{n}} =\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{k}} \\ $$$$\:\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{k}+\mathrm{1}}\leqslant\int_{\mathrm{k}} ^{\mathrm{k}+\mathrm{1}} \frac{\mathrm{1}}{\mathrm{t}}\leqslant\frac{\mathrm{1}}{\mathrm{k}} \\ $$$$\Rightarrow\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{k}+\mathrm{1}}\leqslant\mathrm{ln}\left(\mathrm{n}+\mathrm{1}\right)\leqslant\mathrm{H}_{{n}} \\ $$$$\Rightarrow\mathrm{H}_{\mathrm{n}} \geqslant\mathrm{ln}\left(\mathrm{n}+\mathrm{1}\right)\Rightarrow\frac{\mathrm{1}}{\mathrm{nH}_{\mathrm{n}} }\leqslant\frac{\mathrm{1}}{\mathrm{nln}\left(\mathrm{n}+\mathrm{1}\right)} \\ $$$$\:\:\:\mathrm{H}_{\mathrm{n}+\mathrm{1}} −\mathrm{1}\leqslant\mathrm{ln}\left(\mathrm{n}+\mathrm{1}\right) \\ $$$$\mathrm{H}_{\mathrm{n}} \leqslant\mathrm{ln}\left(\mathrm{n}\right)+\mathrm{1}\Rightarrow\frac{\mathrm{1}}{\mathrm{nH}_{\mathrm{n}} }\geqslant\frac{\mathrm{1}}{\mathrm{nln}\left(\mathrm{n}\right)+\mathrm{n}} \\ $$$$\Rightarrow\Sigma\frac{\mathrm{1}}{\mathrm{nH}_{\mathrm{n}} }\geqslant\underset{\mathrm{n}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{1}}{\mathrm{n}\left(\mathrm{ln}\left(\mathrm{n}\right)+\mathrm{1}\right)}\rightarrow+\infty \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com