Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 74800 by mathmax by abdo last updated on 30/Nov/19

study the existence of f(x)=∫_0 ^∞   ((tcos(tx))/(1+t^2 ))dt

studytheexistenceoff(x)=0tcos(tx)1+t2dt

Answered by mind is power last updated on 30/Nov/19

x=0  ∫_0 ^(+∞) (t/(1+t^2 ))dt  divege  for x#0  ipp     [_0 ^(+∞) (t/(t^2 +1)).((sin(xt))/x)]−(1/x)∫_0 ^(+∞) sin(xt).(((1−t^2 ))/((1+t^2 )^2 ))dt  =−(1/x)∫_0 ^(+∞) (((1−t^2 )sin(xt))/((1+t^2 )^2 ))dt  exist cv abdolutly  ≤(1/(∣x∣))∫_0 ^(+∞) ((∣(1−t^2 )∣)/((1+t^2 )^2 ))dt  exist since   at[+∞   (((t^2 −1))/((t^2 +1)^2 ))∼(1/t^2 ),wich is Reimann/integrabl at +∞  f(x) exist overR^∗

x=00+t1+t2dtdivegeYou can't use 'macro parameter character #' in math modeipp[0+tt2+1.sin(xt)x]1x0+sin(xt).(1t2)(1+t2)2dt=1x0+(1t2)sin(xt)(1+t2)2dtexistcvabdolutly1x0+(1t2)(1+t2)2dtexistsinceat[+(t21)(t2+1)21t2,wichisReimann/integrablat+f(x)existoverR

Terms of Service

Privacy Policy

Contact: info@tinkutara.com