Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 74801 by behi83417@gmail.com last updated on 30/Nov/19

 { ((x^2 +y^3 =23)),((x^3 +y^2 =32)) :}      solve for x and y .

{x2+y3=23x3+y2=32solveforxandy.

Commented by MJS last updated on 30/Nov/19

if you plot these you see there′s only one  real solution  x≈2.96773  y≈2.42114

ifyouplottheseyouseetheresonlyonerealsolutionx2.96773y2.42114

Commented by MJS last updated on 01/Dec/19

approximating I also found these  x≈−1.88268±2.70319i; y≈−1.83861±2.44516i  x≈−1.50880±3.04643i; y≈−1.29910∓2.87425i  x≈−1.36613±2.49017i; y≈3.03262±.247148i  x≈3.27375±.139609i; y≈−1.10548±2.02898i  ...so we get 9 solutions

approximatingIalsofoundthesex1.88268±2.70319i;y1.83861±2.44516ix1.50880±3.04643i;y1.299102.87425ix1.36613±2.49017i;y3.03262±.247148ix3.27375±.139609i;y1.10548±2.02898i...soweget9solutions

Answered by behi83417@gmail.com last updated on 01/Dec/19

dear proph. MJS! thank you very much.  god bless you sir.

dearproph.MJS!thankyouverymuch.godblessyousir.

Answered by ajfour last updated on 01/Dec/19

 (x^2 −23)^2 =(32−x^3 )^3     x^9 −96x^6 +x^4 +3072x^3 −46x^2               +23^2 −32^3  = 0  or    x^2 (x−1)+y^2 (1−y)=9 =b−a           x^2 (x+1)+y^2 (1+y)=55 =a+b  ⇒  x^2 =(((b−a)(1+y)−(a+b)(1−y))/(2(xy−1)))        y^2 =(((a+b)(x−1)−(b−a)(x+1))/(2(xy−1)))  ⇒  (x^2 /y^2 )=((by−a)/(ax−b))     &     x^2 y^2 (xy−1)=(by−a)(ax−b)  let   x=(b/a)u ,  y=(a/b)v   ⇒     u^2 v^2 (uv−1)=ab(u−1)(v−1)      (b^4 /a^4 )=(a/b)(((v−1)/(u−1)))  ⇒  ((v−1)/(u−1))=(b^5 /a^5 ) = (k/1)  ⇒  ((u+v−2)/(√(uv−(u+v)+1)))=((k+1)/(√k))  let  u+v=s , uv=m  ⇒  k(s−2)^2 =(k+1)^2 {(m−1)−(s−2)}  &   m^2 (m−1)=ab{(m−1)−(s−2)}  ⇒ ab(1−((s−2)/(m−1)))=m^2    k(m−1)(1−(m^2 /(ab)))^2 =((m^2 (k+1)^2 )/(ab))  ......  ... (matter of quintic polynomial)

(x223)2=(32x3)3x996x6+x4+3072x346x2+232323=0orx2(x1)+y2(1y)=9=bax2(x+1)+y2(1+y)=55=a+bx2=(ba)(1+y)(a+b)(1y)2(xy1)y2=(a+b)(x1)(ba)(x+1)2(xy1)x2y2=byaaxb&x2y2(xy1)=(bya)(axb)letx=bau,y=abvu2v2(uv1)=ab(u1)(v1)b4a4=ab(v1u1)v1u1=b5a5=k1u+v2uv(u+v)+1=k+1kletu+v=s,uv=mk(s2)2=(k+1)2{(m1)(s2)}&m2(m1)=ab{(m1)(s2)}ab(1s2m1)=m2k(m1)(1m2ab)2=m2(k+1)2ab.........(matterofquinticpolynomial)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com