Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 74863 by mrS last updated on 02/Dec/19

Commented by abdomathmax last updated on 03/Dec/19

we have S=Σ_(n=1) ^(45)  (1/n^2 ) =Σ_(p=1) ^([((45)/2)])   (1/((2p)^2 )) +Σ_(p=0) ^([((45−1)/2)])  (1/((2p+1)^2 ))  =(1/4)Σ_(p=1) ^(22)  (1/p^2 ) +Σ_(p=0) ^(22)  (1/((2p+1)^2 ))  Σ_(p=1) ^(22)  (1/p^2 ) =Σ_(k=1) ^(11)   (1/((2k)^2 )) +Σ_(k=0) ^([((22−1)/2)])  (1/((2k+1)^2 ))  =(1/4) Σ_(p=1) ^(11)  (1/p^2 ) +Σ_(p=0) ^(10)   (1/((2p+1)^2 )) ⇒  S =(1/4)( (1/4) Σ_(p=1) ^(11)  (1/p^2 ) +Σ_(p=0) ^(10)  (1/((2p+1)^2 )))+Σ_(p=0) ^(22)  (1/((2p+1)^2 ))  =(1/4^2 )Σ_(p=1) ^(11)  (1/p^2 ) +(1/4)Σ_(p=0) ^(10)  (1/((2p+1)^2 )) +Σ_0 ^(22)  (1/((2p+1)^2 ))  also  Σ_(p=1) ^(11)  (1/p^2 ) =Σ_(p=1) ^(10)  (1/(4p^2 )) +Σ_(p=0) ^5  (1/((2p+1)^2 )) ⇒  S =(1/4^2 )((1/4)Σ_(p=1) ^(10)   (1/p^2 ) +Σ_(p=0) ^5  (1/((2p+1)^2 )))+(1/4)Σ_(p=0) ^(10)  (1/((2p+1)^2 ))  +Σ_(p=0) ^(22)  (1/((2p+1)^2 ))  S=(1/4^3 ) Σ_(p=1) ^(10)  (1/p^2 ) +(1/4^2 ) Σ_(p=0) ^5  (1/((2p+1)^2 )) +(1/4)Σ_(p=0) ^(10) (1/((2p+1)^2 ))  +Σ_(p=0) ^(22)   (1/((2p+1)^2 ))  S=(1/4^3 )Σ_(p=1) ^(10)  (1/p^2 ) +((1/4^2 )+(1/4))Σ_(p=0) ^5  (1/((2p+1)^2 ))+(1/4)Σ_(p=6) ^(10) (1/((2p+1)^2 ))  +((1/4) +1)Σ_(p=0) ^(10)  (1/((2p+1)^2 )) +Σ_(p=11) ^(22)  (1/((2p+1)^2 ))  Σ_(p=6) ^(10)  (1/((2p+1)^2 )) =_(p−6=k)   Σ_(k=0) ^4  (1/((2(6+k)+1)^2 ))  =Σ_(k=0) ^4  (1/((2k+13)^2 ))  Σ_(p=11) ^(22)   (1/((2p+1)^2 )) =_(p−11=k)    Σ_(k=0) ^(11)   (1/((2k+23)^2 ))  and Σ_(p=1) ^(10)  (1/p^2 )  can also be simplified  so the   value of S is p.p known....

wehaveS=n=1451n2=p=1[452]1(2p)2+p=0[4512]1(2p+1)2=14p=1221p2+p=0221(2p+1)2p=1221p2=k=1111(2k)2+k=0[2212]1(2k+1)2=14p=1111p2+p=0101(2p+1)2S=14(14p=1111p2+p=0101(2p+1)2)+p=0221(2p+1)2=142p=1111p2+14p=0101(2p+1)2+0221(2p+1)2alsop=1111p2=p=11014p2+p=051(2p+1)2S=142(14p=1101p2+p=051(2p+1)2)+14p=0101(2p+1)2+p=0221(2p+1)2S=143p=1101p2+142p=051(2p+1)2+14p=0101(2p+1)2+p=0221(2p+1)2S=143p=1101p2+(142+14)p=051(2p+1)2+14p=6101(2p+1)2+(14+1)p=0101(2p+1)2+p=11221(2p+1)2p=6101(2p+1)2=p6=kk=041(2(6+k)+1)2=k=041(2k+13)2p=11221(2p+1)2=p11=kk=0111(2k+23)2andp=1101p2canalsobesimplifiedsothevalueofSisp.pknown....

Answered by MJS last updated on 02/Dec/19

all you can do is calculate it

allyoucandoiscalculateit

Commented by tw000001 last updated on 03/Dec/19

I know Σ_(n=1) ^∞ (1/n^2 )=(π^2 /6)≈1.644,  then Σ_(n=1) ^(45) (1/n^2 )≈1.622.

Iknown=11n2=π261.644,then45n=11n21.622.

Answered by tw000001 last updated on 03/Dec/19

Σ_(n=1) ^(45) (1/n^2 )=(π^2 /6)−(1/(45))≈1.622

45n=11n2=π261451.622

Commented by MJS last updated on 03/Dec/19

Σ_(n=1) ^(45) (1/n^2 )=Σ_(n=1) ^∞ (1/n^2 )−(1/(45))  (1/(45))+Σ_(n=1) ^(45) (1/n^2 )=Σ_(n=1) ^∞ (1/n^2 )  (k∈N^★  ⇒ Σ_(n=1) ^k (1/n^2 )∈Q)∧(1/(45))∈Q ⇒  ⇒ ((1/(45))+Σ_(n=1) ^(45) (1/n^2 ))∈Q ⇒ (π^2 /6)∈Q which is wrong  ⇒ Σ_(n=1) ^(45) (1/n^2 )≠Σ_(n=1) ^∞ (1/n^2 )−(1/(45))

45n=11n2=n=11n2145145+45n=11n2=n=11n2(kNkn=11n2Q)145Q(145+45n=11n2)Qπ26Qwhichiswrong45n=11n2n=11n2145

Commented by tw000001 last updated on 03/Dec/19

OK, I know the answer is 1.622.  But is there any possible solution that is  approximately on 1.622?

OK,Iknowtheansweris1.622.Butisthereanypossiblesolutionthatisapproximatelyon1.622?

Commented by MJS last updated on 03/Dec/19

the exact value is (m/n) with m, n > 10^(37)   you can use a calculator to get an approximation  but there′s no unique approximation  I get  Σ_(n=1) ^(45) (1/n^2 )≈1.6229569293973  the exact value is  ((2i0 571 823 268 450 072 862 674 893 950 786 869 803)/(12 675 520 154 492 970 709 544 386 574 878 080 000))

theexactvalueismnwithm,n>1037youcanuseacalculatortogetanapproximationbuttheresnouniqueapproximationIget45n=11n21.6229569293973theexactvalueis2i057182326845007286267489395078686980312675520154492970709544386574878080000

Terms of Service

Privacy Policy

Contact: info@tinkutara.com