Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 74870 by vishalbhardwaj last updated on 02/Dec/19

solve with explanation  lim_(x→0^− ) [(x/(sinx))], where [  ] represents greatest integer

$$\mathrm{solve}\:\mathrm{with}\:\mathrm{explanation} \\ $$$$\mathrm{li}\underset{\mathrm{x}\rightarrow\mathrm{0}^{−} } {\mathrm{m}}\left[\frac{\mathrm{x}}{\mathrm{sinx}}\right],\:\mathrm{where}\:\left[\:\:\right]\:\mathrm{represents}\:\mathrm{greatest}\:\mathrm{integer} \\ $$

Commented by mathmax by abdo last updated on 02/Dec/19

we have sinx =Σ_(n=0) ^∞  (((−1)^n x^(2n+1) )/((2n+1)!))  with radius R=+∞  sinx =x−(x^3 /(3!)) +(x^5 /(5!))−.... ⇒  x−(x^3 /6) ≤sinx ≤x (we can take 0≤x≤(π/2))  1−(x^2 /6)≤((sinx)/x) ≤1 ⇒[1−(x^2 /6)] ≤[((sinx)/x)]≤1 ⇒1+[−(x^2 /2)]≤[((sinx)/x)]≤1  ⇒lim_(x→0)    [((sinx)/x)] =1

$${we}\:{have}\:{sinx}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} {x}^{\mathrm{2}{n}+\mathrm{1}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)!}\:\:{with}\:{radius}\:{R}=+\infty \\ $$$${sinx}\:={x}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}\:+\frac{{x}^{\mathrm{5}} }{\mathrm{5}!}−....\:\Rightarrow\:\:{x}−\frac{{x}^{\mathrm{3}} }{\mathrm{6}}\:\leqslant{sinx}\:\leqslant{x}\:\left({we}\:{can}\:{take}\:\mathrm{0}\leqslant{x}\leqslant\frac{\pi}{\mathrm{2}}\right) \\ $$$$\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{6}}\leqslant\frac{{sinx}}{{x}}\:\leqslant\mathrm{1}\:\Rightarrow\left[\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{6}}\right]\:\leqslant\left[\frac{{sinx}}{{x}}\right]\leqslant\mathrm{1}\:\Rightarrow\mathrm{1}+\left[−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\right]\leqslant\left[\frac{{sinx}}{{x}}\right]\leqslant\mathrm{1} \\ $$$$\Rightarrow{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\left[\frac{{sinx}}{{x}}\right]\:=\mathrm{1} \\ $$

Answered by mind is power last updated on 02/Dec/19

 (x/(sin(x)))>0 whe x∈]−(π/2),0[        [(x/(sin(x)))]   ≤(x/(sin(x)))...(√E)  x<sin(x),   for all x∈]−(π/2),0[  proof  cos(t)≤1  f(x)=x−sin(x)⇒f′(x)=1−cos(x)≥0  f increase  f(0)=0⇒    x−sin(x)<0 ∀x∈[−(π/2),0[  ⇒x<sin(x)  ⇒(x/(sin(x)))≥1   ,  ∴sin(x)≤0∴  ⇒[(x/(sin(x)))]≥1  ⇒E⇔1≤[(x/(sin(x)))]≤(x/(sin(x)))  lim_(x→0) (x/(sin(x)))=lim_(x→0) (1/(cos(x)))=1  hopitaks Rulls  ⇒lim_(x→0)   [(x/(sin(x)))]=1

$$\left.\:\frac{\mathrm{x}}{\mathrm{sin}\left(\mathrm{x}\right)}>\mathrm{0}\:\mathrm{whe}\:\mathrm{x}\in\right]−\frac{\pi}{\mathrm{2}},\mathrm{0}\left[\right. \\ $$$$\:\:\:\:\:\:\left[\frac{\mathrm{x}}{\mathrm{sin}\left(\mathrm{x}\right)}\right]\:\:\:\leqslant\frac{\mathrm{x}}{\mathrm{sin}\left(\mathrm{x}\right)}...\sqrt{\mathrm{E}} \\ $$$$\left.\mathrm{x}<\mathrm{sin}\left(\mathrm{x}\right),\:\:\:\mathrm{for}\:\mathrm{all}\:\mathrm{x}\in\right]−\frac{\pi}{\mathrm{2}},\mathrm{0}\left[\right. \\ $$$$\mathrm{proof} \\ $$$$\mathrm{cos}\left(\mathrm{t}\right)\leqslant\mathrm{1} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{x}−\mathrm{sin}\left(\mathrm{x}\right)\Rightarrow\mathrm{f}'\left(\mathrm{x}\right)=\mathrm{1}−\mathrm{cos}\left(\mathrm{x}\right)\geqslant\mathrm{0} \\ $$$$\mathrm{f}\:\mathrm{increase}\:\:\mathrm{f}\left(\mathrm{0}\right)=\mathrm{0}\Rightarrow\:\:\:\:\mathrm{x}−\mathrm{sin}\left(\mathrm{x}\right)<\mathrm{0}\:\forall\mathrm{x}\in\left[−\frac{\pi}{\mathrm{2}},\mathrm{0}\left[\right.\right. \\ $$$$\Rightarrow\mathrm{x}<\mathrm{sin}\left(\mathrm{x}\right) \\ $$$$\Rightarrow\frac{\mathrm{x}}{\mathrm{sin}\left(\mathrm{x}\right)}\geqslant\mathrm{1}\:\:\:,\:\:\therefore\mathrm{sin}\left(\mathrm{x}\right)\leqslant\mathrm{0}\therefore \\ $$$$\Rightarrow\left[\frac{\mathrm{x}}{\mathrm{sin}\left(\mathrm{x}\right)}\right]\geqslant\mathrm{1} \\ $$$$\Rightarrow\mathrm{E}\Leftrightarrow\mathrm{1}\leqslant\left[\frac{\mathrm{x}}{\mathrm{sin}\left(\mathrm{x}\right)}\right]\leqslant\frac{\mathrm{x}}{\mathrm{sin}\left(\mathrm{x}\right)} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{x}}{\mathrm{sin}\left(\mathrm{x}\right)}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}}{\mathrm{cos}\left(\mathrm{x}\right)}=\mathrm{1}\:\:\mathrm{hopitaks}\:\mathrm{Rulls} \\ $$$$\Rightarrow\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\left[\frac{\mathrm{x}}{\mathrm{sin}\left(\mathrm{x}\right)}\right]=\mathrm{1} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com