Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 74880 by aliesam last updated on 03/Dec/19

solve inR  ((∣x+1∣))^(1/5) −((x^2 +4x−9))^(1/(10)) =(2x−10)(√(x^2 +1))

$${solve}\:{inR} \\ $$$$\sqrt[{\mathrm{5}}]{\mid{x}+\mathrm{1}\mid}−\sqrt[{\mathrm{10}}]{{x}^{\mathrm{2}} +\mathrm{4}{x}−\mathrm{9}}=\left(\mathrm{2}{x}−\mathrm{10}\right)\sqrt{{x}^{\mathrm{2}} +\mathrm{1}} \\ $$

Answered by mind is power last updated on 03/Dec/19

x^2 +4x−9  x^2 +4x−9>0⇒  x∈]−∞,((−4−(√(52)))/2)]∪]((−4+(√(52)))/2),+∞[  ((∣x+1∣))^(1/5) ≥((x^2 +4x−9))^(1/(10))   ⇒x^2 +2x+1≥x^2 +4x−9  ⇒2x≤10⇒x≤5....h  let α solution  of   ((∣x+1∣))^(1/5) −((x^2 +4x−9))^(1/(10)) =(2x−10)(√(x^2 +1))  if α<5  we get by..H  ((∣α+1∣))^(1/5) −((α^2 +4α−9))^(1/(10))   >0  but (2α−10)(√(α^2 +1))<0 absurd  if α>5  ((∣α+1∣))^(1/5) −((α^2 +4α−9))^(1/(10)) <0  (2α−10)(√(α^2 +1))>0 absurd  So if ther exist solution α,α∈R−{]−∞,5[∪]5,+∞[}⇔α∈{5}  for α=5 we have  (6)^(1/5) −((36))^(1/(10)) =(2.5−10)(√(26))=0  true since 36=6^2   S={5}

$$\mathrm{x}^{\mathrm{2}} +\mathrm{4x}−\mathrm{9} \\ $$$$\mathrm{x}^{\mathrm{2}} +\mathrm{4x}−\mathrm{9}>\mathrm{0}\Rightarrow \\ $$$$\left.\mathrm{x}\left.\in\left.\right]−\infty,\frac{−\mathrm{4}−\sqrt{\mathrm{52}}}{\mathrm{2}}\right]\cup\right]\frac{−\mathrm{4}+\sqrt{\mathrm{52}}}{\mathrm{2}},+\infty\left[\right. \\ $$$$\sqrt[{\mathrm{5}}]{\mid\mathrm{x}+\mathrm{1}\mid}\geqslant\sqrt[{\mathrm{10}}]{\mathrm{x}^{\mathrm{2}} +\mathrm{4x}−\mathrm{9}} \\ $$$$\Rightarrow\mathrm{x}^{\mathrm{2}} +\mathrm{2x}+\mathrm{1}\geqslant\mathrm{x}^{\mathrm{2}} +\mathrm{4x}−\mathrm{9} \\ $$$$\Rightarrow\mathrm{2x}\leqslant\mathrm{10}\Rightarrow\mathrm{x}\leqslant\mathrm{5}....\mathrm{h} \\ $$$$\mathrm{let}\:\alpha\:\mathrm{solution} \\ $$$$\mathrm{of}\: \\ $$$$\sqrt[{\mathrm{5}}]{\mid\mathrm{x}+\mathrm{1}\mid}−\sqrt[{\mathrm{10}}]{\mathrm{x}^{\mathrm{2}} +\mathrm{4x}−\mathrm{9}}=\left(\mathrm{2x}−\mathrm{10}\right)\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\mathrm{if}\:\alpha<\mathrm{5} \\ $$$$\mathrm{we}\:\mathrm{get}\:\mathrm{by}..\mathrm{H} \\ $$$$\sqrt[{\mathrm{5}}]{\mid\alpha+\mathrm{1}\mid}−\sqrt[{\mathrm{10}}]{\alpha^{\mathrm{2}} +\mathrm{4}\alpha−\mathrm{9}}\:\:>\mathrm{0} \\ $$$$\mathrm{but}\:\left(\mathrm{2}\alpha−\mathrm{10}\right)\sqrt{\alpha^{\mathrm{2}} +\mathrm{1}}<\mathrm{0}\:\mathrm{absurd} \\ $$$$\mathrm{if}\:\alpha>\mathrm{5} \\ $$$$\sqrt[{\mathrm{5}}]{\mid\alpha+\mathrm{1}\mid}−\sqrt[{\mathrm{10}}]{\alpha^{\mathrm{2}} +\mathrm{4}\alpha−\mathrm{9}}<\mathrm{0} \\ $$$$\left(\mathrm{2}\alpha−\mathrm{10}\right)\sqrt{\alpha^{\mathrm{2}} +\mathrm{1}}>\mathrm{0}\:\mathrm{absurd} \\ $$$$\mathrm{So}\:\mathrm{if}\:\mathrm{ther}\:\mathrm{exist}\:\mathrm{solution}\:\alpha,\alpha\in\mathbb{R}−\left\{\right]−\infty,\mathrm{5}\left[\cup\right]\mathrm{5},+\infty\left[\right\}\Leftrightarrow\alpha\in\left\{\mathrm{5}\right\} \\ $$$$\mathrm{for}\:\alpha=\mathrm{5}\:\mathrm{we}\:\mathrm{have} \\ $$$$\sqrt[{\mathrm{5}}]{\mathrm{6}}−\sqrt[{\mathrm{10}}]{\mathrm{36}}=\left(\mathrm{2}.\mathrm{5}−\mathrm{10}\right)\sqrt{\mathrm{26}}=\mathrm{0} \\ $$$$\mathrm{true}\:\mathrm{since}\:\mathrm{36}=\mathrm{6}^{\mathrm{2}} \\ $$$$\mathrm{S}=\left\{\mathrm{5}\right\} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com