Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 74948 by vishalbhardwaj last updated on 04/Dec/19

The hhpotenuse of a right angled triangle  has its ends at the points (1,3) and (−4,1)  . Find an equation of the legs (perpendicar   sides) of the triangle.

$$\mathrm{The}\:\mathrm{hhpotenuse}\:\mathrm{of}\:\mathrm{a}\:\mathrm{right}\:\mathrm{angled}\:\mathrm{triangle} \\ $$$$\mathrm{has}\:\mathrm{its}\:\mathrm{ends}\:\mathrm{at}\:\mathrm{the}\:\mathrm{points}\:\left(\mathrm{1},\mathrm{3}\right)\:\mathrm{and}\:\left(−\mathrm{4},\mathrm{1}\right) \\ $$$$.\:\mathrm{Find}\:\mathrm{an}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{legs}\:\left(\mathrm{perpendicar}\right. \\ $$$$\left.\:\mathrm{sides}\right)\:\mathrm{of}\:\mathrm{the}\:\mathrm{triangle}. \\ $$

Answered by MJS last updated on 04/Dec/19

given hypothenuse ⇒ the 3^(rd)  point is located  on a circle with center in the center of the  hyp. and radius=((hyp.)/2)  center=(( ((1),(3) )+ (((−4)),(1) ))/2)= (((−(3/2))),(2) )  radius=(1/2)abs ( ((1),(3) )− (((−4)),(1) ))=(1/2)(√(29))  equation of circle is  (x+(3/2))^2 +(y−2)^2 =((29)/4)  y=2±(√(−x^2 −3x+5)) ⇒ −(3/2)−((√(29))/2)≤x≤−(3/2)+((√(29))/2)  so there′s no unique triangle    triangles ABC_1 , ABC_2   let A= (((−4)),(1) )  B= ((1),(3) )  C_(1, 2) = ((p),((2±(√(−p^2 −3p+5)))) )  equations of lines  AB: y=(2/5)x+((13)/5)  AC_1 : y=((1−(√(−p^2 −3p+5)))/(p+4))x+((p+8−4(√(−p^2 −3p+5)))/(p+4))  BC_1 : y=−((1+(√(−p^2 −3p+5)))/(p−1))x+((3p−2+(√(−p^2 −3p+5)))/(p−1))  AC_2 : y=((1+(√(−p^2 −3p+5)))/(p+4))x+((p+8+4(√(−p^2 −3p+5)))/(p+4))  BC_2 : y=−((1−(√(−p^2 −3p+5)))/(p−1))x+((3p−2−(√(−p^2 −3p+5)))/(p−1))  ∀p∈R∣−(3/2)−((√(29))/2)≤x≤−(3/2)+((√(29))/2)∧p≠1∧p≠−4

$$\mathrm{given}\:\mathrm{hypothenuse}\:\Rightarrow\:\mathrm{the}\:\mathrm{3}^{\mathrm{rd}} \:\mathrm{point}\:\mathrm{is}\:\mathrm{located} \\ $$$$\mathrm{on}\:\mathrm{a}\:\mathrm{circle}\:\mathrm{with}\:\mathrm{center}\:\mathrm{in}\:\mathrm{the}\:\mathrm{center}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{hyp}.\:\mathrm{and}\:\mathrm{radius}=\frac{\mathrm{hyp}.}{\mathrm{2}} \\ $$$$\mathrm{center}=\frac{\begin{pmatrix}{\mathrm{1}}\\{\mathrm{3}}\end{pmatrix}+\begin{pmatrix}{−\mathrm{4}}\\{\mathrm{1}}\end{pmatrix}}{\mathrm{2}}=\begin{pmatrix}{−\frac{\mathrm{3}}{\mathrm{2}}}\\{\mathrm{2}}\end{pmatrix} \\ $$$$\mathrm{radius}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{abs}\:\left(\begin{pmatrix}{\mathrm{1}}\\{\mathrm{3}}\end{pmatrix}−\begin{pmatrix}{−\mathrm{4}}\\{\mathrm{1}}\end{pmatrix}\right)=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{29}} \\ $$$$\mathrm{equation}\:\mathrm{of}\:\mathrm{circle}\:\mathrm{is} \\ $$$$\left({x}+\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{2}} +\left({y}−\mathrm{2}\right)^{\mathrm{2}} =\frac{\mathrm{29}}{\mathrm{4}} \\ $$$${y}=\mathrm{2}\pm\sqrt{−{x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{5}}\:\Rightarrow\:−\frac{\mathrm{3}}{\mathrm{2}}−\frac{\sqrt{\mathrm{29}}}{\mathrm{2}}\leqslant{x}\leqslant−\frac{\mathrm{3}}{\mathrm{2}}+\frac{\sqrt{\mathrm{29}}}{\mathrm{2}} \\ $$$$\mathrm{so}\:\mathrm{there}'\mathrm{s}\:\mathrm{no}\:\mathrm{unique}\:\mathrm{triangle} \\ $$$$ \\ $$$$\mathrm{triangles}\:{ABC}_{\mathrm{1}} ,\:{ABC}_{\mathrm{2}} \\ $$$$\mathrm{let}\:{A}=\begin{pmatrix}{−\mathrm{4}}\\{\mathrm{1}}\end{pmatrix}\:\:{B}=\begin{pmatrix}{\mathrm{1}}\\{\mathrm{3}}\end{pmatrix}\:\:{C}_{\mathrm{1},\:\mathrm{2}} =\begin{pmatrix}{{p}}\\{\mathrm{2}\pm\sqrt{−{p}^{\mathrm{2}} −\mathrm{3}{p}+\mathrm{5}}}\end{pmatrix} \\ $$$$\mathrm{equations}\:\mathrm{of}\:\mathrm{lines} \\ $$$${AB}:\:{y}=\frac{\mathrm{2}}{\mathrm{5}}{x}+\frac{\mathrm{13}}{\mathrm{5}} \\ $$$${AC}_{\mathrm{1}} :\:{y}=\frac{\mathrm{1}−\sqrt{−{p}^{\mathrm{2}} −\mathrm{3}{p}+\mathrm{5}}}{{p}+\mathrm{4}}{x}+\frac{{p}+\mathrm{8}−\mathrm{4}\sqrt{−{p}^{\mathrm{2}} −\mathrm{3}{p}+\mathrm{5}}}{{p}+\mathrm{4}} \\ $$$${BC}_{\mathrm{1}} :\:{y}=−\frac{\mathrm{1}+\sqrt{−{p}^{\mathrm{2}} −\mathrm{3}{p}+\mathrm{5}}}{{p}−\mathrm{1}}{x}+\frac{\mathrm{3}{p}−\mathrm{2}+\sqrt{−{p}^{\mathrm{2}} −\mathrm{3}{p}+\mathrm{5}}}{{p}−\mathrm{1}} \\ $$$${AC}_{\mathrm{2}} :\:{y}=\frac{\mathrm{1}+\sqrt{−{p}^{\mathrm{2}} −\mathrm{3}{p}+\mathrm{5}}}{{p}+\mathrm{4}}{x}+\frac{{p}+\mathrm{8}+\mathrm{4}\sqrt{−{p}^{\mathrm{2}} −\mathrm{3}{p}+\mathrm{5}}}{{p}+\mathrm{4}} \\ $$$${BC}_{\mathrm{2}} :\:{y}=−\frac{\mathrm{1}−\sqrt{−{p}^{\mathrm{2}} −\mathrm{3}{p}+\mathrm{5}}}{{p}−\mathrm{1}}{x}+\frac{\mathrm{3}{p}−\mathrm{2}−\sqrt{−{p}^{\mathrm{2}} −\mathrm{3}{p}+\mathrm{5}}}{{p}−\mathrm{1}} \\ $$$$\forall{p}\in\mathbb{R}\mid−\frac{\mathrm{3}}{\mathrm{2}}−\frac{\sqrt{\mathrm{29}}}{\mathrm{2}}\leqslant{x}\leqslant−\frac{\mathrm{3}}{\mathrm{2}}+\frac{\sqrt{\mathrm{29}}}{\mathrm{2}}\wedge{p}\neq\mathrm{1}\wedge{p}\neq−\mathrm{4} \\ $$$$ \\ $$

Commented by vishalbhardwaj last updated on 04/Dec/19

sir equation of perpendicular sides ??

$$\mathrm{sir}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{perpendicular}\:\mathrm{sides}\:?? \\ $$

Commented by MJS last updated on 04/Dec/19

ran out of time, will finish in about an hour  or two

$$\mathrm{ran}\:\mathrm{out}\:\mathrm{of}\:\mathrm{time},\:\mathrm{will}\:\mathrm{finish}\:\mathrm{in}\:\mathrm{about}\:\mathrm{an}\:\mathrm{hour} \\ $$$$\mathrm{or}\:\mathrm{two} \\ $$

Commented by MJS last updated on 04/Dec/19

is this what you need?

$$\mathrm{is}\:\mathrm{this}\:\mathrm{what}\:\mathrm{you}\:\mathrm{need}? \\ $$

Commented by vishalbhardwaj last updated on 04/Dec/19

yes sir

$$\mathrm{yes}\:\mathrm{sir} \\ $$

Commented by vishalbhardwaj last updated on 05/Dec/19

but sir the equations of perpendicular  lines are given x = 1 and y = 1, why ??

$$\mathrm{but}\:\mathrm{sir}\:\mathrm{the}\:\mathrm{equations}\:\mathrm{of}\:\mathrm{perpendicular} \\ $$$$\mathrm{lines}\:\mathrm{are}\:\mathrm{given}\:{x}\:=\:\mathrm{1}\:\mathrm{and}\:{y}\:=\:\mathrm{1},\:\mathrm{why}\:?? \\ $$

Commented by MJS last updated on 05/Dec/19

I don′t know. the triangle is not unique, we  would need more information  anyway the point  ((1),(1) ) lies on the circle, p=1  ⇒ we cannot use my formulas but we can  calculate the lines AC and BC and yes, they  are x=1 and y=1  with the given information this is only one  solution

$$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{know}.\:\mathrm{the}\:\mathrm{triangle}\:\mathrm{is}\:\mathrm{not}\:\mathrm{unique},\:\mathrm{we} \\ $$$$\mathrm{would}\:\mathrm{need}\:\mathrm{more}\:\mathrm{information} \\ $$$$\mathrm{anyway}\:\mathrm{the}\:\mathrm{point}\:\begin{pmatrix}{\mathrm{1}}\\{\mathrm{1}}\end{pmatrix}\:\mathrm{lies}\:\mathrm{on}\:\mathrm{the}\:\mathrm{circle},\:{p}=\mathrm{1} \\ $$$$\Rightarrow\:\mathrm{we}\:\mathrm{cannot}\:\mathrm{use}\:\mathrm{my}\:\mathrm{formulas}\:\mathrm{but}\:\mathrm{we}\:\mathrm{can} \\ $$$$\mathrm{calculate}\:\mathrm{the}\:\mathrm{lines}\:{AC}\:\mathrm{and}\:{BC}\:\mathrm{and}\:\mathrm{yes},\:\mathrm{they} \\ $$$$\mathrm{are}\:{x}=\mathrm{1}\:\mathrm{and}\:{y}=\mathrm{1} \\ $$$$\mathrm{with}\:\mathrm{the}\:\mathrm{given}\:\mathrm{information}\:\mathrm{this}\:\mathrm{is}\:\mathrm{only}\:\mathrm{one} \\ $$$$\mathrm{solution} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com