Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 74980 by ~blr237~ last updated on 05/Dec/19

Prove that for n∈N^∗    Σ_(p=0) ^(n−1)  [x+(p/n)]=[nx]

ProvethatfornNn1p=0[x+pn]=[nx]

Answered by mind is power last updated on 05/Dec/19

let f(x)=Σ_(p=0) ^(n−1) [x+(p/n)]  f(x+(1/n))=Σ_(p=0) ^(n−1) [x+(1/n)+(p/n)]=Σ_(p=1) ^n [x+(p/n)]=Σ_(p=1) ^(n−1) [x+(p/n)]+[x+1]=1+[x]+Σ_(p=1) ^(n−1) [x+(p/n)]  =1+Σ_(p=0) ^(n−1) [x+(p/n)]=1+f(x)....E  g(x)=[nx]  g(x+(1/n))=[n(x+(1/n))]=1+[nx]  ⇒we have juste to show for x∈[0,(1/n)[  x∈[0,(1/n)[⇒x+(p/n)<(1/n)+((n−1)/n)<1,∀p∈[0,n−1]  ⇒f(x)=0  x<(1/n)⇒nx<1⇒g(x)=0  g(x)=f(x)=0,∀x∈[0,(1/n)[⇒f(x)=g(x),∀x∈R  withe   ∀x∈R  if x∈[0,(1/n)[ we are donne  x=((E(nx))/n)+x−((E(nx))/n)  x−((E(nx))/n)∈[0,(1/n)[  E(nx)≤nx⇒x−((E(nx))/n)>0  nx−1<E(nx) ⇒((E(nx))/n)>x−(1/n)⇒x−((E(nx))/n)<(1/n)  ⇒f(x)=f(((E(nx))/n)+{x−((E(nx))/n)})  E(nx)+f(x−((E(nx))/n))=k since f=0 in [0,(1/n)[  g(((E(nx))/n)+x−((E(nx))/n))=E(nx)+g(x−((E(nx))/n))=E(nx)  since  g=0  in [0,(1/n)[  ⇒g(x)=f(x),∀x∈R

letf(x)=n1p=0[x+pn]f(x+1n)=n1p=0[x+1n+pn]=np=1[x+pn]=n1p=1[x+pn]+[x+1]=1+[x]+n1p=1[x+pn]=1+n1p=0[x+pn]=1+f(x)....Eg(x)=[nx]g(x+1n)=[n(x+1n)]=1+[nx]wehavejustetoshowforx[0,1n[x[0,1n[x+pn<1n+n1n<1,p[0,n1]f(x)=0x<1nnx<1g(x)=0g(x)=f(x)=0,x[0,1n[f(x)=g(x),xRwithexRifx[0,1n[wearedonnex=E(nx)n+xE(nx)nxE(nx)n[0,1n[E(nx)nxxE(nx)n>0nx1<E(nx)E(nx)n>x1nxE(nx)n<1nf(x)=f(E(nx)n+{xE(nx)n})E(nx)+f(xE(nx)n)=ksincef=0in[0,1n[g(E(nx)n+xE(nx)n)=E(nx)+g(xE(nx)n)=E(nx)sinceg=0in[0,1n[g(x)=f(x),xR

Terms of Service

Privacy Policy

Contact: info@tinkutara.com