Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 74994 by aliesam last updated on 05/Dec/19

Commented by mind is power last updated on 05/Dec/19

Commented by mind is power last updated on 05/Dec/19

∠ACB=α,∠ABC=β,∠BAC=ϕ  AB=c,BC=a,AC=b  OL=OT=r_3  ⇒MLOT Squar  ⇒MT=r_3 =r  OBS≡OBT  ⇒∠OBC=(1/2)∠(MBC)  ∠MBC=180−(90+α)=90−α  ⇒∠OBS=∠OBC=((90−α)/2)=(π/4)−(α/2)(i prefer radian )  BM=asin(α)  BT=asin(α)+r  BO=(r/(sin((π/4)−(α/2)))),BO^2 =(r^2 /(sin^2 ((π/4)−(α/2))))=(r^2 /((((√2)/2)cos((α/2))−((√2)/2)sin((α/2)))^2 ))  =((2r^2 )/(1−sin(α)))  BO^2 =BT^2 +r^2 =(asin(α)+r)^2 +r^2 =((2r^2 )/(1−sin(α)))  ⇔2r^2 +2arsin(α)+a^2 sin^2 (α)=((2r^2 )/(1−sin(α)))  ⇔((−2r^2 sin(α))/(1−sin(α)))+2arsin(α)+a^2 sin^2 (α)=0  ⇔−2r^2 +2a(1−sin(α)r+a^2 sin(α)(1−sinα)=0  Δ=4a^2 (1−sinα)^2 +8a^2 sin(α)(1−sin(α))  =4a^2 (1+sin^2 (α)−2sin(α)+2sin(α)−2sin^2 (α))  =4a^2 (1−sin^2 (α))=4a^2 cos^2 (α)  r=((−2a(1−sin(α))−2acos(α))/(−4))  =((a(cos(α)−sin(α)+1))/2)=r_3   sam  idea Symetric approche  r_4 =((c(cos(ϕ)−sin(ϕ)+1))/2),r_5 =((b(cos(ϕ)−sin(ϕ)+1))/2)  r_6 =((a(cos(β)−sin(β)+1))/2),r_2 =((b(cos(α)−sin(α)+1))/2)  r_1 =((c(cos(β)−sin(β)+1))/2)   r_1 .r_3 r_5 =((abc(cos(β)−sin(β)+1)(cos(α)−sin(α)+1)(cos(ϕ)−sin(ϕ)+1))/8)  r_2 r_4 r_6 =((abc(cos(β)−sin(β)+1)(cos(α)−sin(α)+1)(cos(ϕ)−sin(ϕ)+1))/8)  ⇔r_1 .r_3 .r_5 =r_2 .r_4 .r_6

$$\angle\mathrm{ACB}=\alpha,\angle\mathrm{ABC}=\beta,\angle\mathrm{BAC}=\varphi \\ $$$$\mathrm{AB}=\mathrm{c},\mathrm{BC}=\mathrm{a},\mathrm{AC}=\mathrm{b} \\ $$$$\mathrm{OL}=\mathrm{OT}=\mathrm{r}_{\mathrm{3}} \:\Rightarrow\mathrm{MLOT}\:\mathrm{Squar} \\ $$$$\Rightarrow\mathrm{MT}=\mathrm{r}_{\mathrm{3}} =\mathrm{r} \\ $$$$\mathrm{OBS}\equiv\mathrm{OBT} \\ $$$$\Rightarrow\angle\mathrm{OBC}=\frac{\mathrm{1}}{\mathrm{2}}\angle\left(\mathrm{MBC}\right) \\ $$$$\angle\mathrm{MBC}=\mathrm{180}−\left(\mathrm{90}+\alpha\right)=\mathrm{90}−\alpha \\ $$$$\Rightarrow\angle\mathrm{OBS}=\angle\mathrm{OBC}=\frac{\mathrm{90}−\alpha}{\mathrm{2}}=\frac{\pi}{\mathrm{4}}−\frac{\alpha}{\mathrm{2}}\left(\mathrm{i}\:\mathrm{prefer}\:\mathrm{radian}\:\right) \\ $$$$\mathrm{BM}=\mathrm{asin}\left(\alpha\right) \\ $$$$\mathrm{BT}=\mathrm{asin}\left(\alpha\right)+\mathrm{r} \\ $$$$\mathrm{BO}=\frac{\mathrm{r}}{\mathrm{sin}\left(\frac{\pi}{\mathrm{4}}−\frac{\alpha}{\mathrm{2}}\right)},\mathrm{BO}^{\mathrm{2}} =\frac{\mathrm{r}^{\mathrm{2}} }{\mathrm{sin}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{4}}−\frac{\alpha}{\mathrm{2}}\right)}=\frac{\mathrm{r}^{\mathrm{2}} }{\left(\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{cos}\left(\frac{\alpha}{\mathrm{2}}\right)−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{sin}\left(\frac{\alpha}{\mathrm{2}}\right)\right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{2r}^{\mathrm{2}} }{\mathrm{1}−\mathrm{sin}\left(\alpha\right)} \\ $$$$\mathrm{BO}^{\mathrm{2}} =\mathrm{BT}^{\mathrm{2}} +\mathrm{r}^{\mathrm{2}} =\left(\mathrm{asin}\left(\alpha\right)+\mathrm{r}\right)^{\mathrm{2}} +\mathrm{r}^{\mathrm{2}} =\frac{\mathrm{2r}^{\mathrm{2}} }{\mathrm{1}−\mathrm{sin}\left(\alpha\right)} \\ $$$$\Leftrightarrow\mathrm{2r}^{\mathrm{2}} +\mathrm{2arsin}\left(\alpha\right)+\mathrm{a}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \left(\alpha\right)=\frac{\mathrm{2r}^{\mathrm{2}} }{\mathrm{1}−\mathrm{sin}\left(\alpha\right)} \\ $$$$\Leftrightarrow\frac{−\mathrm{2r}^{\mathrm{2}} \mathrm{sin}\left(\alpha\right)}{\mathrm{1}−\mathrm{sin}\left(\alpha\right)}+\mathrm{2arsin}\left(\alpha\right)+\mathrm{a}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \left(\alpha\right)=\mathrm{0} \\ $$$$\Leftrightarrow−\mathrm{2r}^{\mathrm{2}} +\mathrm{2a}\left(\mathrm{1}−\mathrm{sin}\left(\alpha\right)\mathrm{r}+\mathrm{a}^{\mathrm{2}} \mathrm{sin}\left(\alpha\right)\left(\mathrm{1}−\mathrm{sin}\alpha\right)=\mathrm{0}\right. \\ $$$$\Delta=\mathrm{4a}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{sin}\alpha\right)^{\mathrm{2}} +\mathrm{8a}^{\mathrm{2}} \mathrm{sin}\left(\alpha\right)\left(\mathrm{1}−\mathrm{sin}\left(\alpha\right)\right) \\ $$$$=\mathrm{4a}^{\mathrm{2}} \left(\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \left(\alpha\right)−\mathrm{2sin}\left(\alpha\right)+\mathrm{2sin}\left(\alpha\right)−\mathrm{2sin}^{\mathrm{2}} \left(\alpha\right)\right) \\ $$$$=\mathrm{4a}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \left(\alpha\right)\right)=\mathrm{4a}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \left(\alpha\right) \\ $$$$\mathrm{r}=\frac{−\mathrm{2a}\left(\mathrm{1}−\mathrm{sin}\left(\alpha\right)\right)−\mathrm{2acos}\left(\alpha\right)}{−\mathrm{4}} \\ $$$$=\frac{\mathrm{a}\left(\mathrm{cos}\left(\alpha\right)−\mathrm{sin}\left(\alpha\right)+\mathrm{1}\right)}{\mathrm{2}}=\mathrm{r}_{\mathrm{3}} \\ $$$$\mathrm{sam}\:\:\mathrm{idea}\:\mathrm{Symetric}\:\mathrm{approche} \\ $$$$\mathrm{r}_{\mathrm{4}} =\frac{\mathrm{c}\left(\mathrm{cos}\left(\varphi\right)−\mathrm{sin}\left(\varphi\right)+\mathrm{1}\right)}{\mathrm{2}},\mathrm{r}_{\mathrm{5}} =\frac{\mathrm{b}\left(\mathrm{cos}\left(\varphi\right)−\mathrm{sin}\left(\varphi\right)+\mathrm{1}\right)}{\mathrm{2}} \\ $$$$\mathrm{r}_{\mathrm{6}} =\frac{\mathrm{a}\left(\mathrm{cos}\left(\beta\right)−\mathrm{sin}\left(\beta\right)+\mathrm{1}\right)}{\mathrm{2}},\mathrm{r}_{\mathrm{2}} =\frac{\mathrm{b}\left(\mathrm{cos}\left(\alpha\right)−\mathrm{sin}\left(\alpha\right)+\mathrm{1}\right)}{\mathrm{2}} \\ $$$$\mathrm{r}_{\mathrm{1}} =\frac{\mathrm{c}\left(\mathrm{cos}\left(\beta\right)−\mathrm{sin}\left(\beta\right)+\mathrm{1}\right)}{\mathrm{2}}\: \\ $$$$\mathrm{r}_{\mathrm{1}} .\mathrm{r}_{\mathrm{3}} \mathrm{r}_{\mathrm{5}} =\frac{\mathrm{abc}\left(\mathrm{cos}\left(\beta\right)−\mathrm{sin}\left(\beta\right)+\mathrm{1}\right)\left(\mathrm{cos}\left(\alpha\right)−\mathrm{sin}\left(\alpha\right)+\mathrm{1}\right)\left(\mathrm{cos}\left(\varphi\right)−\mathrm{sin}\left(\varphi\right)+\mathrm{1}\right)}{\mathrm{8}} \\ $$$$\mathrm{r}_{\mathrm{2}} \mathrm{r}_{\mathrm{4}} \mathrm{r}_{\mathrm{6}} =\frac{\mathrm{abc}\left(\mathrm{cos}\left(\beta\right)−\mathrm{sin}\left(\beta\right)+\mathrm{1}\right)\left(\mathrm{cos}\left(\alpha\right)−\mathrm{sin}\left(\alpha\right)+\mathrm{1}\right)\left(\mathrm{cos}\left(\varphi\right)−\mathrm{sin}\left(\varphi\right)+\mathrm{1}\right)}{\mathrm{8}} \\ $$$$\Leftrightarrow{r}_{\mathrm{1}} .{r}_{\mathrm{3}} .{r}_{\mathrm{5}} ={r}_{\mathrm{2}} .{r}_{\mathrm{4}} .{r}_{\mathrm{6}} \\ $$$$ \\ $$$$ \\ $$

Commented by aliesam last updated on 05/Dec/19

thank you so much sir . god bless you    but what is Δ

$${thank}\:{you}\:{so}\:{much}\:{sir}\:.\:{god}\:{bless}\:{you} \\ $$$$ \\ $$$${but}\:{what}\:{is}\:\Delta\: \\ $$

Commented by mind is power last updated on 05/Dec/19

in Franc  we use Δ discriminant of aX^2 +bX+c  :Δ=b^2 −4ac

$$\mathrm{in}\:\mathrm{Franc}\:\:\mathrm{we}\:\mathrm{use}\:\Delta\:\mathrm{discriminant}\:\mathrm{of}\:\mathrm{aX}^{\mathrm{2}} +\mathrm{bX}+\mathrm{c} \\ $$$$:\Delta=\mathrm{b}^{\mathrm{2}} −\mathrm{4ac}\: \\ $$

Commented by aliesam last updated on 05/Dec/19

thank you sir

$${thank}\:{you}\:{sir}\: \\ $$

Commented by mind is power last updated on 05/Dec/19

y′re Welcom

$$\mathrm{y}'\mathrm{re}\:\mathrm{Welcom} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com