Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 74995 by vishalbhardwaj last updated on 05/Dec/19

find ∫_0 ^(π/2) Log cosx dx

find0π2Logcosxdx

Commented by mathmax by abdo last updated on 06/Dec/19

let I =∫_0 ^(π/2) ln(cosx)dx   and J =∫_0 ^(π/2) ln(sinx)dx  we hsve J=_(x=(π/2)−t)    ∫_(π/2) ^0 ln(cost)(−dt)=∫_0 ^(π/2) ln(cost)dt =I ⇒  2I = I +J =∫_0 ^(π/2) ln(cosx sinx)dx =∫_0 ^(π/2) ln((1/2)sin(2x))dx  =−(π/2)ln(2)+∫_0 ^(π/2)  ln(sin(2x))dx  but  ∫_0 ^(π/2)  ln(sin(2x))dx =_(2x =t)  (1/2) ∫_0 ^π ln(sint)dt  =(1/2) ∫_0 ^(π/2) ln(sint)dt +(1/2) ∫_(π/2) ^π  ln(sint)dt  ∫_(π/2) ^π ln(sint)dt =_(x=(π/2)+u)   ∫_0 ^(π/2) ln(cosu)du ⇒  2I=−(π/2)ln(2)+I  ⇒ I=−(π/2)ln(2) we have proved that  ∫_0 ^(π/2) ln(cosx)dx =∫_0 ^(π/2) ln(sinx)dx =−(π/2)ln(2).

letI=0π2ln(cosx)dxandJ=0π2ln(sinx)dxwehsveJ=x=π2tπ20ln(cost)(dt)=0π2ln(cost)dt=I2I=I+J=0π2ln(cosxsinx)dx=0π2ln(12sin(2x))dx=π2ln(2)+0π2ln(sin(2x))dxbut0π2ln(sin(2x))dx=2x=t120πln(sint)dt=120π2ln(sint)dt+12π2πln(sint)dtπ2πln(sint)dt=x=π2+u0π2ln(cosu)du2I=π2ln(2)+II=π2ln(2)wehaveprovedthat0π2ln(cosx)dx=0π2ln(sinx)dx=π2ln(2).

Answered by mind is power last updated on 05/Dec/19

∫_0 ^(π/2) log(cos(x))dx=∫_0 ^(π/2) log(sin(x))dx,∴x→(π/2)−x∴  ∫_0 ^(π/2) log(sin(2x))dx=∫_0 ^π log(2sin(x)cos(x))=πlog(2)+∫_0 ^(π/2) log(sin(x))dx+∫_0 ^(π/2) log(cos(x))dx  =πlog(2)+2∫_0 ^(π/2) log(sin(x))dx  u=2x⇒=∫_0 ^π ((log(sin(u))du)/2)  ∫_0 ^π log(sin(u))du=∫_0 ^(π/2) log(sin(u))du+∫_(π/2) ^π log(sin(u))du  ∫_(π/2) ^π log(sin(u))du=∫_0 ^(π/2) log(sin((π/2)+u))d(u+(π/2))=∫_0 ^(π/2) log(cos(u))du  ⇒∫_0 ^π ((log(sin(u))du)/2)=∫_0 ^(π/2) log(sin(u))du  ⇔πlog(2)+2∫_0 ^(π/2) log(sin(u))du=∫_0 ^(π/2) log(sin(u))du  ⇒∫_0 ^(π/2) log(sin(u))du=−πlog(2)

0π2log(cos(x))dx=0π2log(sin(x))dx,xπ2x0π2log(sin(2x))dx=0πlog(2sin(x)cos(x))=πlog(2)+0π2log(sin(x))dx+0π2log(cos(x))dx=πlog(2)+20π2log(sin(x))dxu=2x⇒=0πlog(sin(u))du20πlog(sin(u))du=0π2log(sin(u))du+π2πlog(sin(u))duπ2πlog(sin(u))du=0π2log(sin(π2+u))d(u+π2)=0π2log(cos(u))du0πlog(sin(u))du2=0π2log(sin(u))duπlog(2)+20π2log(sin(u))du=0π2log(sin(u))du0π2log(sin(u))du=πlog(2)

Commented by mathmax by abdo last updated on 06/Dec/19

error of calculus sir mind..

errorofcalculussirmind..

Terms of Service

Privacy Policy

Contact: info@tinkutara.com