Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 7501 by Yozzia last updated on 01/Sep/16

Compute lim_(A→+∞) {(1/A)∫_1 ^A A^(1/x) dx}.  (IMC 2015)

$${Compute}\:\underset{{A}\rightarrow+\infty} {\mathrm{lim}}\left\{\frac{\mathrm{1}}{{A}}\int_{\mathrm{1}} ^{{A}} {A}^{\frac{\mathrm{1}}{{x}}} {dx}\right\}. \\ $$$$\left({IMC}\:\mathrm{2015}\right) \\ $$

Answered by FilupSmith last updated on 01/Sep/16

L =lim_(A→∞) {(1/A)∫_1 ^A A^(1/x) dx}  unsure if math is correct.  L =lim_(A→∞) {(1/A)∫_1 ^A e^((1/x)ln(A)) dx}  u=e^((1/x)ln(A))  ⇒ du=−x^(−2) ln(A)e^(x^(−1) ln(A)) dx  x=((ln(A))/(ln(u)))  du=−((ln(u))/x)udx  du=−((ln^2 (u))/(ln(A)))udx  dx=−((ln(A))/(uln^2 (u)))du  L =lim_(A→∞) {(1/A)∫_(x=1) ^( x=A) u(−((ln(A))/(uln^2 (u)))du)}  L =lim_(A→∞) {−(1/A)∫_(x=1) ^( x=A) u((ln(A))/(uln^2 (u)))du}  L =lim_(A→∞) {−((ln(A))/A)∫_(x=1) ^( x=A) (1/(ln^2 (u)))du}  limit of  ((ln(A))/A)=(1/A) as A→∞ = 0  0×constant=0  continue

$${L}\:=\underset{{A}\rightarrow\infty} {\mathrm{lim}}\left\{\frac{\mathrm{1}}{{A}}\int_{\mathrm{1}} ^{{A}} {A}^{\frac{\mathrm{1}}{{x}}} {dx}\right\} \\ $$$${unsure}\:{if}\:{math}\:{is}\:{correct}. \\ $$$${L}\:=\underset{{A}\rightarrow\infty} {\mathrm{lim}}\left\{\frac{\mathrm{1}}{{A}}\int_{\mathrm{1}} ^{{A}} {e}^{\frac{\mathrm{1}}{{x}}\mathrm{ln}\left({A}\right)} {dx}\right\} \\ $$$${u}={e}^{\frac{\mathrm{1}}{{x}}\mathrm{ln}\left({A}\right)} \:\Rightarrow\:{du}=−{x}^{−\mathrm{2}} \mathrm{ln}\left({A}\right){e}^{{x}^{−\mathrm{1}} \mathrm{ln}\left({A}\right)} {dx} \\ $$$${x}=\frac{\mathrm{ln}\left({A}\right)}{\mathrm{ln}\left({u}\right)} \\ $$$${du}=−\frac{\mathrm{ln}\left({u}\right)}{{x}}{udx} \\ $$$${du}=−\frac{\mathrm{ln}^{\mathrm{2}} \left({u}\right)}{\mathrm{ln}\left({A}\right)}{udx} \\ $$$${dx}=−\frac{\mathrm{ln}\left({A}\right)}{{u}\mathrm{ln}^{\mathrm{2}} \left({u}\right)}{du} \\ $$$${L}\:=\underset{{A}\rightarrow\infty} {\mathrm{lim}}\left\{\frac{\mathrm{1}}{{A}}\int_{{x}=\mathrm{1}} ^{\:{x}={A}} {u}\left(−\frac{\mathrm{ln}\left({A}\right)}{{u}\mathrm{ln}^{\mathrm{2}} \left({u}\right)}{du}\right)\right\} \\ $$$${L}\:=\underset{{A}\rightarrow\infty} {\mathrm{lim}}\left\{−\frac{\mathrm{1}}{{A}}\int_{{x}=\mathrm{1}} ^{\:{x}={A}} {u}\frac{\mathrm{ln}\left({A}\right)}{{u}\mathrm{ln}^{\mathrm{2}} \left({u}\right)}{du}\right\} \\ $$$${L}\:=\underset{{A}\rightarrow\infty} {\mathrm{lim}}\left\{−\frac{\mathrm{ln}\left({A}\right)}{{A}}\int_{{x}=\mathrm{1}} ^{\:{x}={A}} \frac{\mathrm{1}}{\mathrm{ln}^{\mathrm{2}} \left({u}\right)}{du}\right\} \\ $$$${limit}\:{of}\:\:\frac{\mathrm{ln}\left({A}\right)}{{A}}=\frac{\mathrm{1}}{{A}}\:{as}\:{A}\rightarrow\infty\:=\:\mathrm{0} \\ $$$$\mathrm{0}×{constant}=\mathrm{0} \\ $$$${continue} \\ $$

Commented by FilupSmith last updated on 01/Sep/16

∫(1/(ln^2 (u)))du  t=ln^2 (u)  u=e^t^(1/2)    dt=2ln(u)(1/u)du  (u/(2ln(u)))dt=du  (e^t^(1/2)  /(2t^(1/2) ))dt=du  L =lim_(A→∞) {−((ln(A))/A)∫_(x=1) ^( x=A) (1/(ln^2 (u)))du}  L =lim_(A→∞) {−((ln(A))/A)∫_(x=1) ^( x=A) (e^t^(1/2)  /(2t^(3/2) ))dt}  correct???

$$\int\frac{\mathrm{1}}{\mathrm{ln}^{\mathrm{2}} \left({u}\right)}{du} \\ $$$${t}=\mathrm{ln}^{\mathrm{2}} \left({u}\right) \\ $$$${u}={e}^{{t}^{\mathrm{1}/\mathrm{2}} } \\ $$$${dt}=\mathrm{2ln}\left({u}\right)\frac{\mathrm{1}}{{u}}{du} \\ $$$$\frac{{u}}{\mathrm{2ln}\left({u}\right)}{dt}={du} \\ $$$$\frac{{e}^{{t}^{\mathrm{1}/\mathrm{2}} } }{\mathrm{2}{t}^{\mathrm{1}/\mathrm{2}} }{dt}={du} \\ $$$${L}\:=\underset{{A}\rightarrow\infty} {\mathrm{lim}}\left\{−\frac{\mathrm{ln}\left({A}\right)}{{A}}\int_{{x}=\mathrm{1}} ^{\:{x}={A}} \frac{\mathrm{1}}{\mathrm{ln}^{\mathrm{2}} \left({u}\right)}{du}\right\} \\ $$$${L}\:=\underset{{A}\rightarrow\infty} {\mathrm{lim}}\left\{−\frac{\mathrm{ln}\left({A}\right)}{{A}}\int_{{x}=\mathrm{1}} ^{\:{x}={A}} \frac{{e}^{{t}^{\mathrm{1}/\mathrm{2}} } }{\mathrm{2}{t}^{\mathrm{3}/\mathrm{2}} }{dt}\right\} \\ $$$${correct}??? \\ $$

Commented by Yozzia last updated on 01/Sep/16

So far it seems ok. I can access the  solution online, but I don′t know it.  It′s a question from the 2015 International  Mathematics Competition for Universities.  Just recently I got wind of this competition  and now I have access to a variety of  intriguing problems which I′ll hopefully  be able to solve as I progress in my   undergraduate studies. I′m hoping  to share some of those problems here  with the forum!

$${So}\:{far}\:{it}\:{seems}\:{ok}.\:{I}\:{can}\:{access}\:{the} \\ $$$${solution}\:{online},\:{but}\:{I}\:{don}'{t}\:{know}\:{it}. \\ $$$${It}'{s}\:{a}\:{question}\:{from}\:{the}\:\mathrm{2015}\:{International} \\ $$$${Mathematics}\:{Competition}\:{for}\:{Universities}. \\ $$$${Just}\:{recently}\:{I}\:{got}\:{wind}\:{of}\:{this}\:{competition} \\ $$$${and}\:{now}\:{I}\:{have}\:{access}\:{to}\:{a}\:{variety}\:{of} \\ $$$${intriguing}\:{problems}\:{which}\:{I}'{ll}\:{hopefully} \\ $$$${be}\:{able}\:{to}\:{solve}\:{as}\:{I}\:{progress}\:{in}\:{my}\: \\ $$$${undergraduate}\:{studies}.\:{I}'{m}\:{hoping} \\ $$$${to}\:{share}\:{some}\:{of}\:{those}\:{problems}\:{here} \\ $$$${with}\:{the}\:{forum}! \\ $$

Commented by FilupSmith last updated on 02/Sep/16

That is awsome. I have no formal education.  I am completely self taught and you have  taught me  lot!

$$\mathrm{That}\:\mathrm{is}\:\mathrm{awsome}.\:\mathrm{I}\:\mathrm{have}\:\mathrm{no}\:\mathrm{formal}\:\mathrm{education}. \\ $$$$\mathrm{I}\:\mathrm{am}\:\mathrm{completely}\:\mathrm{self}\:\mathrm{taught}\:\mathrm{and}\:\mathrm{you}\:\mathrm{have} \\ $$$$\mathrm{taught}\:\mathrm{me}\:\:\mathrm{lot}! \\ $$

Commented by Alimurtaza last updated on 05/Jan/17

$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com