Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 75041 by ~blr237~ last updated on 06/Dec/19

1) Show that  for a∈]01]the function  f_a  :R_+ →R defined by f_a (x)=x^a    is   a−holder function  in other way  there exist  K>0 such as ∀ x,y>0   ∣f_a (x)−f_a (y)∣≤K∣x−y∣^a

1)Showthatfora]01]thefunctionfa:R+Rdefinedbyfa(x)=xa isaholderfunctioninotherwaythereexistK>0suchasx,y>0 fa(x)fa(y)∣⩽Kxya

Commented by~blr237~ last updated on 06/Dec/19

for  a∈]0,1[

fora]0,1[

Answered by mind is power last updated on 06/Dec/19

error my previous post i put inquality in wrong why  i found this new approch  x^a −y^a ≤(x−y)^a ...?  ⇔1−((y/x))^a ≤(1−(y/x))^a ,<0<y<x  t=(y/x)∈]0,1[  1−t^a ≤(1−t)^a ⇔(1−t)^a +t^a ≥1  let f_t (a)=(1−t)^a +t^a =e^(aln(1−t)) +e^(aln(t))   f′(a)=ln(1−t)e^(aln(1−t)) +ln(t)e^(aln(t)) <0,sincet∈]0,1[  ⇒f(a)≥f(1)=1−t+t=1  ⇒1≤t^a +(1−t)^a   ⇒x^a −y^a ≤∣x−y∣^a   f_a  is holder k=1

errormypreviouspostiputinqualityinwrongwhy ifoundthisnewapproch xaya(xy)a...? 1(yx)a(1yx)a,<0<y<x t=yx]0,1[ 1ta(1t)a(1t)a+ta1 letft(a)=(1t)a+ta=ealn(1t)+ealn(t) f(a)=ln(1t)ealn(1t)+ln(t)ealn(t)<0,sincet]0,1[ f(a)f(1)=1t+t=1 1ta+(1t)a xaya⩽∣xya faisholderk=1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com