All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 75066 by ~blr237~ last updated on 06/Dec/19
ProvethatiffisafunctionR→R andthereexistx0>0,suchasL(f)(x0)exist thenlimt→∞f(t)e−x0t=0and∀x>x0L(f)(x)exist. L(f)istheLaplacetransformedfunction
Answered by mind is power last updated on 07/Dec/19
L(f)(s)=∫0+∞e−stf(t)dt L(f)(x0)=∫0+∞∣e−x0tf(t)∣dt<∞ ⇒e−x0tf(t)isintegrablin+∞ ⇒e−x0tf(t)→0bycv forx>x0 x=x0+n,n∈R+ L(f)(x)=∫0+∞e−(x0+n)tf(t)dt =∫0+∞e−x0tf(t).e−ntdt sinceL(f)(x0)exist⇒limf(t)e−x0t=o⇒∃A∈R∀x>A ∣f(t)e−x0t∣<1⇒∣f(t)e−x0t.e−nt∣<e−nt so∣f(t)e−(x0+n)t∣<e−ntt→e−ntisintegraln>0 ∀t>A so∫0+∞∣f(t)e−(x0+n)t∣dtexist⇒∫0+∞f(t)e−(x0+n)tdtexist
Commented by~blr237~ last updated on 06/Dec/19
sirL(f)(x0)existjustmeanthat∫0∞f(t)e−x0tdt<+∞ thatconditionyouusedisjustsufficient causealliff∈L1(R+)(∫0∞∣f(t)∣dt<+∞)thenL(f)(s)existforalls>0
Commented bymind is power last updated on 07/Dec/19
yessimplescvnotabsulute
Terms of Service
Privacy Policy
Contact: info@tinkutara.com