Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 75066 by ~blr237~ last updated on 06/Dec/19

Prove  that if  f is a function R→R   and  there exist x_0 >0  , such as  L(f)(x_0 ) exist   then lim_(t→∞)  f(t)e^(−x_0 t) =0 and ∀ x>x_0   L(f)(x) exist.  L(f) is the Laplace transformed function

ProvethatiffisafunctionRR andthereexistx0>0,suchasL(f)(x0)exist thenlimtf(t)ex0t=0andx>x0L(f)(x)exist. L(f)istheLaplacetransformedfunction

Answered by mind is power last updated on 07/Dec/19

L(f)(s)=∫_0 ^(+∞) e^(−st) f(t)dt  L(f)(x_0 )=∫_0 ^(+∞) ∣e^(−x_0 t) f(t)∣dt<∞  ⇒e^(−x_0 t) f(t) is integrabl   in+∞  ⇒e^(−x_0 t) f(t)→0 by cv   for x>x_0   x=x_0 +n ,n∈R_+   L(f)(x)=∫_0 ^(+∞) e^(−(x_0 +n)t) f(t)dt  =∫_0 ^(+∞) e^(−x_0 t) f(t).e^(−nt) dt  since L(f)(x_0 ) exist⇒ lim f(t)e^(−x_0 t) =o⇒∃A∈R  ∀x>A  ∣f(t)e^(−x_0 t) ∣<1⇒     ∣f(t)e^(−x_0 t) .e^(−nt) ∣<e^(−nt)   so ∣f(t)e^(−(x_0 +n)t) ∣<e^(−nt)    t→e^(−nt)  is integral n>0  ∀t>A  so ∫_0 ^(+∞) ∣f(t)e^(−(x_0 +n)t) ∣dt exist⇒∫_0 ^(+∞) f(t)e^(−(x_0 +n)t ) dt exist

L(f)(s)=0+estf(t)dt L(f)(x0)=0+ex0tf(t)dt< ex0tf(t)isintegrablin+ ex0tf(t)0bycv forx>x0 x=x0+n,nR+ L(f)(x)=0+e(x0+n)tf(t)dt =0+ex0tf(t).entdt sinceL(f)(x0)existlimf(t)ex0t=oARx>A f(t)ex0t∣<1f(t)ex0t.ent∣<ent sof(t)e(x0+n)t∣<enttentisintegraln>0 t>A so0+f(t)e(x0+n)tdtexist0+f(t)e(x0+n)tdtexist

Commented by~blr237~ last updated on 06/Dec/19

sir  L(f)(x_0 ) exist  just mean that ∫_0 ^∞ f(t)e^(−x_0 t) dt <+∞    that condition you used is just sufficient  cause all  if  f∈ L^1 (R_+ )(∫_0 ^∞ ∣f(t)∣dt<+∞)  then L(f)(s) exist for all s>0

sirL(f)(x0)existjustmeanthat0f(t)ex0tdt<+ thatconditionyouusedisjustsufficient causealliffL1(R+)(0f(t)dt<+)thenL(f)(s)existforalls>0

Commented bymind is power last updated on 07/Dec/19

yes  simples cv not absulute

yessimplescvnotabsulute

Terms of Service

Privacy Policy

Contact: info@tinkutara.com