Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 75082 by Rio Michael last updated on 07/Dec/19

find  ∫_0 ^π e^(cosx) sinx dx

find0πecosxsinxdx

Answered by mr W last updated on 07/Dec/19

∫_0 ^π e^(cosx) sinx dx  =−∫_0 ^π e^(cosx) d(cos x)  =−[e^(cos x) ]_0 ^π   =e−(1/e)

0πecosxsinxdx=0πecosxd(cosx)=[ecosx]0π=e1e

Commented by Rio Michael last updated on 07/Dec/19

i don′t understand step 2 sir

idontunderstandstep2sir

Commented by MJS last updated on 07/Dec/19

it′s short for  ∫_0 ^π e^(cos x) sin x dx=       [t=cos x → dx=−(dt/(sin x))]  =−∫_1 ^(−1) e^t dt=[−e^t ]_1 ^(−1) =[e^t ]_(−1) ^1 =e−(1/e)

itsshortforπ0ecosxsinxdx=[t=cosxdx=dtsinx]=11etdt=[et]11=[et]11=e1e

Commented by Rio Michael last updated on 07/Dec/19

thank you sir,thank you so much sir

thankyousir,thankyousomuchsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com