Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 75093 by Rio Michael last updated on 07/Dec/19

∫cos^3 xsin^3 xdx

cos3xsin3xdx

Commented by mathmax by abdo last updated on 07/Dec/19

I =∫ cos^3 x sin^3 xdx =∫ (cosxsinx)^3  dx  =(1/8) ∫ (sin(2x))^3  dx =(1/8) ∫  sin(2x)sin^2 (2x)dx  =(1/8) ∫ sin(2x)(((1−cos(4x))/2))dx  =(1/(16)) ∫ sin(2x)dx−(1/(16)) ∫  sin(2x)cos(4x)dx  sin(2x)cos(4x) =cos((π/2)−2x)cos(4x)  =(1/2){ cos((π/2)+2x) +cos((π/2)−6x)} =(1/2){sin(6x)−sin(2x)} ⇒  I =−(1/(32)) cos(2x)−(1/(32))∫( sin(6x)−sin(2x))dx  =−(1/(32))cos(2x)+(1/(6×32)) cos(6x)−(1/(64)) cos(2x)+C  =−(3/(64)) cos(2x) +(1/(192)) cos(6x) +C

I=cos3xsin3xdx=(cosxsinx)3dx=18(sin(2x))3dx=18sin(2x)sin2(2x)dx=18sin(2x)(1cos(4x)2)dx=116sin(2x)dx116sin(2x)cos(4x)dxsin(2x)cos(4x)=cos(π22x)cos(4x)=12{cos(π2+2x)+cos(π26x)}=12{sin(6x)sin(2x)}I=132cos(2x)132(sin(6x)sin(2x))dx=132cos(2x)+16×32cos(6x)164cos(2x)+C=364cos(2x)+1192cos(6x)+C

Answered by mr W last updated on 07/Dec/19

∫cos^3 xsin^3 xdx  =∫cos^2 xsin^3 x d(sin x)  =∫(1−sin^2  x)sin^3 x d(sin x)  =∫(sin^3  x−sin^5  x) d(sin x)  =((sin^4  x)/4)−((sin^6  x)/6)+C

cos3xsin3xdx=cos2xsin3xd(sinx)=(1sin2x)sin3xd(sinx)=(sin3xsin5x)d(sinx)=sin4x4sin6x6+C

Commented by Rio Michael last updated on 07/Dec/19

thank you sir,so much

thankyousir,somuch

Terms of Service

Privacy Policy

Contact: info@tinkutara.com