All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 75093 by Rio Michael last updated on 07/Dec/19
∫cos3xsin3xdx
Commented by mathmax by abdo last updated on 07/Dec/19
I=∫cos3xsin3xdx=∫(cosxsinx)3dx=18∫(sin(2x))3dx=18∫sin(2x)sin2(2x)dx=18∫sin(2x)(1−cos(4x)2)dx=116∫sin(2x)dx−116∫sin(2x)cos(4x)dxsin(2x)cos(4x)=cos(π2−2x)cos(4x)=12{cos(π2+2x)+cos(π2−6x)}=12{sin(6x)−sin(2x)}⇒I=−132cos(2x)−132∫(sin(6x)−sin(2x))dx=−132cos(2x)+16×32cos(6x)−164cos(2x)+C=−364cos(2x)+1192cos(6x)+C
Answered by mr W last updated on 07/Dec/19
∫cos3xsin3xdx=∫cos2xsin3xd(sinx)=∫(1−sin2x)sin3xd(sinx)=∫(sin3x−sin5x)d(sinx)=sin4x4−sin6x6+C
Commented by Rio Michael last updated on 07/Dec/19
thankyousir,somuch
Terms of Service
Privacy Policy
Contact: info@tinkutara.com