Question and Answers Forum

All Questions      Topic List

Matrices and Determinants Questions

Previous in All Question      Next in All Question      

Previous in Matrices and Determinants      Next in Matrices and Determinants      

Question Number 75099 by Rio Michael last updated on 07/Dec/19

Given the matrix   A =  ((1,(−1),1),(0,2,( −1)),(2,3,0) )  and B=  ((3,3,(−1)),((−2),(−2),1),((−4),(−5),2) )  find the matrix product AB and BA  state the relationship between A and B  find also the matrix product BM, where M= ((8),((−7)),(1) )  Hence solve the system of equations:    x−y + z = 8,         2y −z =−7,    2x + 3y = 1.

$${Given}\:{the}\:{matrix}\: \\ $$$${A}\:=\:\begin{pmatrix}{\mathrm{1}}&{−\mathrm{1}}&{\mathrm{1}}\\{\mathrm{0}}&{\mathrm{2}}&{\:−\mathrm{1}}\\{\mathrm{2}}&{\mathrm{3}}&{\mathrm{0}}\end{pmatrix}\:\:{and}\:{B}=\:\begin{pmatrix}{\mathrm{3}}&{\mathrm{3}}&{−\mathrm{1}}\\{−\mathrm{2}}&{−\mathrm{2}}&{\mathrm{1}}\\{−\mathrm{4}}&{−\mathrm{5}}&{\mathrm{2}}\end{pmatrix} \\ $$$${find}\:{the}\:{matrix}\:{product}\:{AB}\:{and}\:{BA} \\ $$$${state}\:{the}\:{relationship}\:{between}\:{A}\:{and}\:{B} \\ $$$${find}\:{also}\:{the}\:{matrix}\:{product}\:{BM},\:{where}\:{M}=\begin{pmatrix}{\mathrm{8}}\\{−\mathrm{7}}\\{\mathrm{1}}\end{pmatrix} \\ $$$${Hence}\:{solve}\:{the}\:{system}\:{of}\:{equations}: \\ $$$$\:\:{x}−{y}\:+\:{z}\:=\:\mathrm{8}, \\ $$$$\:\:\:\:\:\:\:\mathrm{2}{y}\:−{z}\:=−\mathrm{7}, \\ $$$$\:\:\mathrm{2}{x}\:+\:\mathrm{3}{y}\:=\:\mathrm{1}. \\ $$

Commented by kaivan.ahmadi last updated on 07/Dec/19

Commented by kaivan.ahmadi last updated on 07/Dec/19

Commented by kaivan.ahmadi last updated on 07/Dec/19

Commented by Rio Michael last updated on 07/Dec/19

nice sir thanks

$${nice}\:{sir}\:{thanks} \\ $$

Answered by Kunal12588 last updated on 07/Dec/19

A= [((   1),(−1),(   1)),((   0),(   2),(−1)),((   2),(   3),(   0)) ], B= [((   3),(   3),(−1)),((−2),(−2),(   1)),((−4),(−5),(   2)) ]  AB= [((3+2−4),(3+2−5),(−1−1+2)),((0−4+4),(0−4+5),(     0+2−2)),((6−6+0),(6−6+0),(−2+3+0)) ]  ⇒AB= [(1,0,0),(0,1,0),(0,0,1) ]= I  BA= [((     3+0−2),(−3+6−3),(    3−3+0)),((−2+0+2),(     2−4+3),(−2+2+0)),((−4+0+4),(  4−10+6),(−4+5+0)) ]  ⇒BA= [(1,0,0),(0,1,0),(0,0,1) ]= I  ∵AB=BA=I⇒A^(−1) =B & B^(−1) =A  M= [((   8)),((−7)),((   1)) ]  BM= [((   3),(   3),(−1)),((−2),(−2),(   1)),((−4),(−5),(   2)) ]_(3×3)  [((   8)),((−7)),((   1)) ]_(3×1)   ⇒BM= [((    24−21−1)),((−16+14+1)),((−32+35+2)) ]= [((   2)),((−1)),((   5)) ]  given eq^n  can be written as   [((   1),(−1),(   1)),((   0),(   2),(−1)),((   2),(   3),(   0)) ] [(x),(y),(z) ]= [((   8)),((−7)),((   1)) ]  ⇒AX=M     ; with X= [(x),(y),(z) ]  ⇒A^(−1) AX=A^(−1) M  ⇒IX=A^(−1) M  ⇒X=BM      [∵ A^(−1) =B proved above]  ⇒ [(x),(y),(z) ]= [((   2)),((−1)),((   5)) ]  ⇒x=2,y=−1 & z=5

$${A}=\begin{bmatrix}{\:\:\:\mathrm{1}}&{−\mathrm{1}}&{\:\:\:\mathrm{1}}\\{\:\:\:\mathrm{0}}&{\:\:\:\mathrm{2}}&{−\mathrm{1}}\\{\:\:\:\mathrm{2}}&{\:\:\:\mathrm{3}}&{\:\:\:\mathrm{0}}\end{bmatrix},\:{B}=\begin{bmatrix}{\:\:\:\mathrm{3}}&{\:\:\:\mathrm{3}}&{−\mathrm{1}}\\{−\mathrm{2}}&{−\mathrm{2}}&{\:\:\:\mathrm{1}}\\{−\mathrm{4}}&{−\mathrm{5}}&{\:\:\:\mathrm{2}}\end{bmatrix} \\ $$$${AB}=\begin{bmatrix}{\mathrm{3}+\mathrm{2}−\mathrm{4}}&{\mathrm{3}+\mathrm{2}−\mathrm{5}}&{−\mathrm{1}−\mathrm{1}+\mathrm{2}}\\{\mathrm{0}−\mathrm{4}+\mathrm{4}}&{\mathrm{0}−\mathrm{4}+\mathrm{5}}&{\:\:\:\:\:\mathrm{0}+\mathrm{2}−\mathrm{2}}\\{\mathrm{6}−\mathrm{6}+\mathrm{0}}&{\mathrm{6}−\mathrm{6}+\mathrm{0}}&{−\mathrm{2}+\mathrm{3}+\mathrm{0}}\end{bmatrix} \\ $$$$\Rightarrow{AB}=\begin{bmatrix}{\mathrm{1}}&{\mathrm{0}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{1}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{1}}\end{bmatrix}=\:{I} \\ $$$${BA}=\begin{bmatrix}{\:\:\:\:\:\mathrm{3}+\mathrm{0}−\mathrm{2}}&{−\mathrm{3}+\mathrm{6}−\mathrm{3}}&{\:\:\:\:\mathrm{3}−\mathrm{3}+\mathrm{0}}\\{−\mathrm{2}+\mathrm{0}+\mathrm{2}}&{\:\:\:\:\:\mathrm{2}−\mathrm{4}+\mathrm{3}}&{−\mathrm{2}+\mathrm{2}+\mathrm{0}}\\{−\mathrm{4}+\mathrm{0}+\mathrm{4}}&{\:\:\mathrm{4}−\mathrm{10}+\mathrm{6}}&{−\mathrm{4}+\mathrm{5}+\mathrm{0}}\end{bmatrix} \\ $$$$\Rightarrow{BA}=\begin{bmatrix}{\mathrm{1}}&{\mathrm{0}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{1}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{1}}\end{bmatrix}=\:{I} \\ $$$$\because{AB}={BA}={I}\Rightarrow{A}^{−\mathrm{1}} ={B}\:\&\:{B}^{−\mathrm{1}} ={A} \\ $$$${M}=\begin{bmatrix}{\:\:\:\mathrm{8}}\\{−\mathrm{7}}\\{\:\:\:\mathrm{1}}\end{bmatrix} \\ $$$${BM}=\begin{bmatrix}{\:\:\:\mathrm{3}}&{\:\:\:\mathrm{3}}&{−\mathrm{1}}\\{−\mathrm{2}}&{−\mathrm{2}}&{\:\:\:\mathrm{1}}\\{−\mathrm{4}}&{−\mathrm{5}}&{\:\:\:\mathrm{2}}\end{bmatrix}_{\mathrm{3}×\mathrm{3}} \begin{bmatrix}{\:\:\:\mathrm{8}}\\{−\mathrm{7}}\\{\:\:\:\mathrm{1}}\end{bmatrix}_{\mathrm{3}×\mathrm{1}} \\ $$$$\Rightarrow{BM}=\begin{bmatrix}{\:\:\:\:\mathrm{24}−\mathrm{21}−\mathrm{1}}\\{−\mathrm{16}+\mathrm{14}+\mathrm{1}}\\{−\mathrm{32}+\mathrm{35}+\mathrm{2}}\end{bmatrix}=\begin{bmatrix}{\:\:\:\mathrm{2}}\\{−\mathrm{1}}\\{\:\:\:\mathrm{5}}\end{bmatrix} \\ $$$${given}\:{eq}^{{n}} \:{can}\:{be}\:{written}\:{as} \\ $$$$\begin{bmatrix}{\:\:\:\mathrm{1}}&{−\mathrm{1}}&{\:\:\:\mathrm{1}}\\{\:\:\:\mathrm{0}}&{\:\:\:\mathrm{2}}&{−\mathrm{1}}\\{\:\:\:\mathrm{2}}&{\:\:\:\mathrm{3}}&{\:\:\:\mathrm{0}}\end{bmatrix}\begin{bmatrix}{{x}}\\{{y}}\\{{z}}\end{bmatrix}=\begin{bmatrix}{\:\:\:\mathrm{8}}\\{−\mathrm{7}}\\{\:\:\:\mathrm{1}}\end{bmatrix} \\ $$$$\Rightarrow{AX}={M}\:\:\:\:\:;\:{with}\:{X}=\begin{bmatrix}{{x}}\\{{y}}\\{{z}}\end{bmatrix} \\ $$$$\Rightarrow{A}^{−\mathrm{1}} {AX}={A}^{−\mathrm{1}} {M} \\ $$$$\Rightarrow{IX}={A}^{−\mathrm{1}} {M} \\ $$$$\Rightarrow{X}={BM}\:\:\:\:\:\:\left[\because\:{A}^{−\mathrm{1}} ={B}\:{proved}\:{above}\right] \\ $$$$\Rightarrow\begin{bmatrix}{{x}}\\{{y}}\\{{z}}\end{bmatrix}=\begin{bmatrix}{\:\:\:\mathrm{2}}\\{−\mathrm{1}}\\{\:\:\:\mathrm{5}}\end{bmatrix} \\ $$$$\Rightarrow{x}=\mathrm{2},{y}=−\mathrm{1}\:\&\:{z}=\mathrm{5} \\ $$

Commented by Rio Michael last updated on 07/Dec/19

thanks so much sir

$${thanks}\:{so}\:{much}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com