Question and Answers Forum

All Questions      Topic List

Vector Calculus Questions

Previous in All Question      Next in All Question      

Previous in Vector Calculus      Next in Vector Calculus      

Question Number 75101 by Rio Michael last updated on 07/Dec/19

the vector equations of two lines L_1  and L_2  is given by   L_1 :r= i−j+3k + λ(i−j +k)  L_2  : r= 2i+aj + 6k + μ(2i + j + 3k)  where a,λ,μ are real constants.  given that L_1  and L_2  intersect find  a.  the value of the constant a.  b.  the position vector of the point of   intersection between L_1  and L_2   c. the cosine of the acute angle between L_1  and L_2   please help

thevectorequationsoftwolinesL1andL2isgivenbyL1:r=ij+3k+λ(ij+k)L2:r=2i+aj+6k+μ(2i+j+3k)wherea,λ,μarerealconstants.giventhatL1andL2intersectfinda.thevalueoftheconstanta.b.thepositionvectorofthepointofintersectionbetweenL1andL2c.thecosineoftheacuteanglebetweenL1andL2pleasehelp

Commented by Kunal12588 last updated on 07/Dec/19

are these your hw question class 12

aretheseyourhwquestionclass12

Commented by Rio Michael last updated on 07/Dec/19

haha no sir,my revision question for my  country′s A level examination,i wanna comfirm my  answers

hahanosir,myrevisionquestionformycountrysAlevelexamination,iwannacomfirmmyanswers

Answered by Kunal12588 last updated on 07/Dec/19

L_1  and L_2  intersect   ∴ shortest dist b/w  L_1 &L_2  = 0  ∴∣(((b_1 ^→ ×b_2 ^→ )∙(a_2 ^→ −a_1 ^→ ))/(∣b_1 ^→ ×b_2 ^→ ∣))∣=0  ⇒ determinant (((2−1),(a+1),(6−3)),((    1),(−1),(   1)),((    2),(   1),(   3)))=0  ⇒ determinant ((1,(a+1),3),(1,(−1),1),(2,(   1),3))=0  ⇒1(−3−1)−(a+1)(3−2)+3(1+2)=0  ⇒−4−a−1+9=0  ⇒a=4

L1andL2intersectshortestdistb/wL1&L2=0∴∣(b1×b2)(a2a1)b1×b2∣=0|21a+163111213|=0|1a+13111213|=01(31)(a+1)(32)+3(1+2)=04a1+9=0a=4

Commented by peter frank last updated on 07/Dec/19

thank you

thankyou

Answered by Kunal12588 last updated on 07/Dec/19

Another way  r of L_1 =r of L_2   (1+λ)i+(−1−λ)j+(3+λ)k=(2+2μ)i+(a+μ)j+(6+3μ)k  1+λ=2+2μ      −1−λ=a+μ          3+λ=6+3μ  ⇒λ−2μ=1       ⇒λ+μ=−1−a    ⇒λ−3μ=3  ⇒−2μ+3μ=1−3  ⇒μ=−2  ⇒λ+4=1⇒λ=−3  ⇒−2−3=−1−a  ⇒a=4

AnotherwayrofL1=rofL2(1+λ)i+(1λ)j+(3+λ)k=(2+2μ)i+(a+μ)j+(6+3μ)k1+λ=2+2μ1λ=a+μ3+λ=6+3μλ2μ=1λ+μ=1aλ3μ=32μ+3μ=13μ=2λ+4=1λ=323=1aa=4

Answered by Kunal12588 last updated on 07/Dec/19

r=i−j+3k+λ(i−j+k)  a^→ =i−j+3k−3(i−j+k)   {λ=−3 for intersection}  =(1−3)i−(1−3)j+(3−3)k  =−2i+2j

r=ij+3k+λ(ij+k)a=ij+3k3(ij+k){λ=3forintersection}=(13)i(13)j+(33)k=2i+2j

Commented by Rio Michael last updated on 07/Dec/19

thank you sir

thankyousir

Answered by Kunal12588 last updated on 07/Dec/19

angle between L_1 &L_2   cos θ = ∣((b_1 ^→ ∙b_2 ^→ )/(∣b_1 ^→ ∣∣b_2 ^→ ∣))∣=∣(((i−j+k)∙(2i+j+3k))/((√(1+1+1))(√(4+1+9))))∣  ⇒cos θ =∣((2−1+3)/((√3)(√(14))))∣=(4/(√(42)))

anglebetweenL1&L2cosθ=b1b2b1∣∣b2∣=∣(ij+k)(2i+j+3k)1+1+14+1+9cosθ=∣21+3314∣=442

Commented by Rio Michael last updated on 07/Dec/19

thanks sir

thankssir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com