Question and Answers Forum

All Questions      Topic List

Vector Calculus Questions

Previous in All Question      Next in All Question      

Previous in Vector Calculus      Next in Vector Calculus      

Question Number 75101 by Rio Michael last updated on 07/Dec/19

the vector equations of two lines L_1  and L_2  is given by   L_1 :r= i−j+3k + λ(i−j +k)  L_2  : r= 2i+aj + 6k + μ(2i + j + 3k)  where a,λ,μ are real constants.  given that L_1  and L_2  intersect find  a.  the value of the constant a.  b.  the position vector of the point of   intersection between L_1  and L_2   c. the cosine of the acute angle between L_1  and L_2   please help

$${the}\:{vector}\:{equations}\:{of}\:{two}\:{lines}\:{L}_{\mathrm{1}} \:{and}\:{L}_{\mathrm{2}} \:{is}\:{given}\:{by} \\ $$$$\:{L}_{\mathrm{1}} :{r}=\:\boldsymbol{{i}}−\boldsymbol{{j}}+\mathrm{3}\boldsymbol{{k}}\:+\:\lambda\left(\boldsymbol{{i}}−\boldsymbol{{j}}\:+\boldsymbol{{k}}\right) \\ $$$${L}_{\mathrm{2}} \::\:{r}=\:\mathrm{2}\boldsymbol{{i}}+{a}\boldsymbol{{j}}\:+\:\mathrm{6}\boldsymbol{{k}}\:+\:\mu\left(\mathrm{2}\boldsymbol{{i}}\:+\:\boldsymbol{{j}}\:+\:\mathrm{3}\boldsymbol{{k}}\right) \\ $$$${where}\:{a},\lambda,\mu\:{are}\:{real}\:{constants}. \\ $$$${given}\:{that}\:{L}_{\mathrm{1}} \:{and}\:{L}_{\mathrm{2}} \:{intersect}\:{find} \\ $$$${a}.\:\:{the}\:{value}\:{of}\:{the}\:{constant}\:{a}. \\ $$$${b}.\:\:{the}\:{position}\:{vector}\:{of}\:{the}\:{point}\:{of}\: \\ $$$${intersection}\:{between}\:{L}_{\mathrm{1}} \:{and}\:{L}_{\mathrm{2}} \\ $$$${c}.\:{the}\:{cosine}\:{of}\:{the}\:{acute}\:{angle}\:{between}\:{L}_{\mathrm{1}} \:{and}\:{L}_{\mathrm{2}} \\ $$$${please}\:{help} \\ $$$$ \\ $$

Commented by Kunal12588 last updated on 07/Dec/19

are these your hw question class 12

$${are}\:{these}\:{your}\:{hw}\:{question}\:{class}\:\mathrm{12} \\ $$

Commented by Rio Michael last updated on 07/Dec/19

haha no sir,my revision question for my  country′s A level examination,i wanna comfirm my  answers

$${haha}\:{no}\:{sir},{my}\:{revision}\:{question}\:{for}\:{my} \\ $$$${country}'{s}\:{A}\:{level}\:{examination},{i}\:{wanna}\:{comfirm}\:{my} \\ $$$${answers} \\ $$

Answered by Kunal12588 last updated on 07/Dec/19

L_1  and L_2  intersect   ∴ shortest dist b/w  L_1 &L_2  = 0  ∴∣(((b_1 ^→ ×b_2 ^→ )∙(a_2 ^→ −a_1 ^→ ))/(∣b_1 ^→ ×b_2 ^→ ∣))∣=0  ⇒ determinant (((2−1),(a+1),(6−3)),((    1),(−1),(   1)),((    2),(   1),(   3)))=0  ⇒ determinant ((1,(a+1),3),(1,(−1),1),(2,(   1),3))=0  ⇒1(−3−1)−(a+1)(3−2)+3(1+2)=0  ⇒−4−a−1+9=0  ⇒a=4

$${L}_{\mathrm{1}} \:{and}\:{L}_{\mathrm{2}} \:{intersect}\: \\ $$$$\therefore\:{shortest}\:{dist}\:{b}/{w}\:\:{L}_{\mathrm{1}} \&{L}_{\mathrm{2}} \:=\:\mathrm{0} \\ $$$$\therefore\mid\frac{\left(\overset{\rightarrow} {{b}}_{\mathrm{1}} ×\overset{\rightarrow} {{b}}_{\mathrm{2}} \right)\centerdot\left(\overset{\rightarrow} {{a}}_{\mathrm{2}} −\overset{\rightarrow} {{a}}_{\mathrm{1}} \right)}{\mid\overset{\rightarrow} {{b}}_{\mathrm{1}} ×\overset{\rightarrow} {{b}}_{\mathrm{2}} \mid}\mid=\mathrm{0} \\ $$$$\Rightarrow\begin{vmatrix}{\mathrm{2}−\mathrm{1}}&{{a}+\mathrm{1}}&{\mathrm{6}−\mathrm{3}}\\{\:\:\:\:\mathrm{1}}&{−\mathrm{1}}&{\:\:\:\mathrm{1}}\\{\:\:\:\:\mathrm{2}}&{\:\:\:\mathrm{1}}&{\:\:\:\mathrm{3}}\end{vmatrix}=\mathrm{0} \\ $$$$\Rightarrow\begin{vmatrix}{\mathrm{1}}&{{a}+\mathrm{1}}&{\mathrm{3}}\\{\mathrm{1}}&{−\mathrm{1}}&{\mathrm{1}}\\{\mathrm{2}}&{\:\:\:\mathrm{1}}&{\mathrm{3}}\end{vmatrix}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{1}\left(−\mathrm{3}−\mathrm{1}\right)−\left({a}+\mathrm{1}\right)\left(\mathrm{3}−\mathrm{2}\right)+\mathrm{3}\left(\mathrm{1}+\mathrm{2}\right)=\mathrm{0} \\ $$$$\Rightarrow−\mathrm{4}−{a}−\mathrm{1}+\mathrm{9}=\mathrm{0} \\ $$$$\Rightarrow{a}=\mathrm{4} \\ $$

Commented by peter frank last updated on 07/Dec/19

thank you

$${thank}\:{you} \\ $$

Answered by Kunal12588 last updated on 07/Dec/19

Another way  r of L_1 =r of L_2   (1+λ)i+(−1−λ)j+(3+λ)k=(2+2μ)i+(a+μ)j+(6+3μ)k  1+λ=2+2μ      −1−λ=a+μ          3+λ=6+3μ  ⇒λ−2μ=1       ⇒λ+μ=−1−a    ⇒λ−3μ=3  ⇒−2μ+3μ=1−3  ⇒μ=−2  ⇒λ+4=1⇒λ=−3  ⇒−2−3=−1−a  ⇒a=4

$${Another}\:{way} \\ $$$${r}\:{of}\:{L}_{\mathrm{1}} ={r}\:{of}\:{L}_{\mathrm{2}} \\ $$$$\left(\mathrm{1}+\lambda\right){i}+\left(−\mathrm{1}−\lambda\right){j}+\left(\mathrm{3}+\lambda\right){k}=\left(\mathrm{2}+\mathrm{2}\mu\right){i}+\left({a}+\mu\right){j}+\left(\mathrm{6}+\mathrm{3}\mu\right){k} \\ $$$$\mathrm{1}+\lambda=\mathrm{2}+\mathrm{2}\mu\:\:\:\:\:\:−\mathrm{1}−\lambda={a}+\mu\:\:\:\:\:\:\:\:\:\:\mathrm{3}+\lambda=\mathrm{6}+\mathrm{3}\mu \\ $$$$\Rightarrow\lambda−\mathrm{2}\mu=\mathrm{1}\:\:\:\:\:\:\:\Rightarrow\lambda+\mu=−\mathrm{1}−{a}\:\:\:\:\Rightarrow\lambda−\mathrm{3}\mu=\mathrm{3} \\ $$$$\Rightarrow−\mathrm{2}\mu+\mathrm{3}\mu=\mathrm{1}−\mathrm{3} \\ $$$$\Rightarrow\mu=−\mathrm{2}\:\:\Rightarrow\lambda+\mathrm{4}=\mathrm{1}\Rightarrow\lambda=−\mathrm{3} \\ $$$$\Rightarrow−\mathrm{2}−\mathrm{3}=−\mathrm{1}−{a} \\ $$$$\Rightarrow{a}=\mathrm{4} \\ $$

Answered by Kunal12588 last updated on 07/Dec/19

r=i−j+3k+λ(i−j+k)  a^→ =i−j+3k−3(i−j+k)   {λ=−3 for intersection}  =(1−3)i−(1−3)j+(3−3)k  =−2i+2j

$${r}={i}−{j}+\mathrm{3}{k}+\lambda\left({i}−{j}+{k}\right) \\ $$$$\overset{\rightarrow} {{a}}={i}−{j}+\mathrm{3}{k}−\mathrm{3}\left({i}−{j}+{k}\right)\:\:\:\left\{\lambda=−\mathrm{3}\:{for}\:{intersection}\right\} \\ $$$$=\left(\mathrm{1}−\mathrm{3}\right){i}−\left(\mathrm{1}−\mathrm{3}\right){j}+\left(\mathrm{3}−\mathrm{3}\right){k} \\ $$$$=−\mathrm{2}{i}+\mathrm{2}{j} \\ $$

Commented by Rio Michael last updated on 07/Dec/19

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Answered by Kunal12588 last updated on 07/Dec/19

angle between L_1 &L_2   cos θ = ∣((b_1 ^→ ∙b_2 ^→ )/(∣b_1 ^→ ∣∣b_2 ^→ ∣))∣=∣(((i−j+k)∙(2i+j+3k))/((√(1+1+1))(√(4+1+9))))∣  ⇒cos θ =∣((2−1+3)/((√3)(√(14))))∣=(4/(√(42)))

$${angle}\:{between}\:{L}_{\mathrm{1}} \&{L}_{\mathrm{2}} \\ $$$${cos}\:\theta\:=\:\mid\frac{\overset{\rightarrow} {{b}}_{\mathrm{1}} \centerdot\overset{\rightarrow} {{b}}_{\mathrm{2}} }{\mid\overset{\rightarrow} {{b}}_{\mathrm{1}} \mid\mid\overset{\rightarrow} {{b}}_{\mathrm{2}} \mid}\mid=\mid\frac{\left({i}−{j}+{k}\right)\centerdot\left(\mathrm{2}{i}+{j}+\mathrm{3}{k}\right)}{\sqrt{\mathrm{1}+\mathrm{1}+\mathrm{1}}\sqrt{\mathrm{4}+\mathrm{1}+\mathrm{9}}}\mid \\ $$$$\Rightarrow{cos}\:\theta\:=\mid\frac{\mathrm{2}−\mathrm{1}+\mathrm{3}}{\sqrt{\mathrm{3}}\sqrt{\mathrm{14}}}\mid=\frac{\mathrm{4}}{\sqrt{\mathrm{42}}} \\ $$

Commented by Rio Michael last updated on 07/Dec/19

thanks sir

$${thanks}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com