Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 75131 by mathocean1 last updated on 07/Dec/19

please help me to show that  tan^2 ((π/8))+2tan((π/8))−1=0

pleasehelpmetoshowthattan2(π8)+2tan(π8)1=0

Answered by mr W last updated on 07/Dec/19

tan (π/4)=1  ⇒tan 2×(π/8)=1  ⇒((2 tan (π/8))/(1−tan^2  (π/8)))=1  ⇒2 tan (π/8)=1−tan^2  (π/8)  ⇒tan^2  (π/8)+2 tan (π/8)−1=0

tanπ4=1tan2×π8=12tanπ81tan2π8=12tanπ8=1tan2π8tan2π8+2tanπ81=0

Commented by mathocean1 last updated on 07/Dec/19

thank you sir...can you help me to   deduct tan(π/8)?

thankyousir...canyouhelpmetodeducttanπ8?

Commented by peter frank last updated on 07/Dec/19

tan 2θ=((2tan θ)/(1−tan^2 θ))  but  θ=(π/8)  tan 2(π/8)=((2tan (π/8))/(1−tan^2 (π/8)))  tan (π/4)=((2tan (π/8))/(1−tan^2 (π/8)))

tan2θ=2tanθ1tan2θbutθ=π8tan2π8=2tanπ81tan2π8tanπ4=2tanπ81tan2π8

Commented by MJS last updated on 07/Dec/19

right idea, just put θ=(α/2)  tan α =((2tan (α/2))/(1−tan^2  (α/2)))  now solve for tan (α/2)  tan (α/2) =−((1±(√(1+tan^2  α)))/(tan α))  now α=(π/4) ⇒ tan α =1  ⇒ tan (π/8) =−1+(√2)  knowing tan (π/8) >0 we cannot use the  second solution −1−(√2)

rightidea,justputθ=α2tanα=2tanα21tan2α2nowsolvefortanα2tanα2=1±1+tan2αtanαnowα=π4tanα=1tanπ8=1+2knowingtanπ8>0wecannotusethesecondsolution12

Terms of Service

Privacy Policy

Contact: info@tinkutara.com