Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 7514 by Tawakalitu. last updated on 01/Sep/16

Answered by Yozzia last updated on 01/Sep/16

sin(πcosα)=cos(πsinα).  Using sina=cos((π/2)−a), we get  cos((π/2)−πcosα)=cos(πsinα)  ⇒(π/2)−πcosα=2nπ±πsinα    (n∈Z)  ∓πsinα−πcosα=2nπ−(π/2)  ∓sinα−cosα=2n−(1/2)  −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−  Suppose we write + in place of ∓.  ∴ sinα−cosα=((4n−1)/2)  (√2)sin(α−(π/4))=((4n−1)/2)  sin(α−(π/4))=((4n−1)/(2(√2)))  Since ∣sin(α−(π/4))∣≤1  ⇒∣((4n−1)/(2(√2)))∣≤1⇒∣4n−1∣≤2(√2)<4  ⇒−4<4n−1<4  −3<4n<5  −(3/4)<n<(5/4)  for n∈Z⇒n=0 or 1.  For n=0,  sin(α−(π/4))=((−1)/(2(√2)))  ⇒sin^2 (α−(π/4))=(1/8)  ⇒((1−cos(2α−(π/2)))/2)=(1/8)  ⇒cos(−(2α−(π/2)))=(3/4)  ⇒sin2α=(3/4)  ⇒α=(1/2)sin^(−1) (3/4)  Suppose n=1. ∴sin(α−0.25π)=(3/(2(√2)))  But, sin^2 (α−0.25π)=(9/8)>1.  Hence, n≠1.  −−−−−−−−−−−−−−−−−−−−−−−−−  Suppose we write − in place of ∓.   We must have n=0.  ∴ −sinα−cosα=((−1)/2)  (√2)sin(α+(π/4))=(1/2)  ⇒sin^2 (α+(π/4))=(1/8)  ⇒((1−cos(2α+π/2))/2)=(1/8)  ∴ cos(2α+(π/2))=(3/4)  −sin2α=(3/4)  ⇒α=((−1)/2)sin^(−1) (3/4)  −−−−−−−−−−−−−−−−−−−−−  ∴ α=±(1/2)sin^(−1) (3/4) if sin(πcosα)=cos(πsinα).  Generally, α=2nπ±(1/2)sin^(−1) (3/4) since  sinu=sin(u+2nπ) and cosk=cos(k+2nπ)   for any u,k∈R.

$${sin}\left(\pi{cos}\alpha\right)={cos}\left(\pi{sin}\alpha\right). \\ $$$${Using}\:{sina}={cos}\left(\frac{\pi}{\mathrm{2}}−{a}\right),\:{we}\:{get} \\ $$$${cos}\left(\frac{\pi}{\mathrm{2}}−\pi{cos}\alpha\right)={cos}\left(\pi{sin}\alpha\right) \\ $$$$\Rightarrow\frac{\pi}{\mathrm{2}}−\pi{cos}\alpha=\mathrm{2}{n}\pi\pm\pi{sin}\alpha\:\:\:\:\left({n}\in\mathbb{Z}\right) \\ $$$$\mp\pi{sin}\alpha−\pi{cos}\alpha=\mathrm{2}{n}\pi−\frac{\pi}{\mathrm{2}} \\ $$$$\mp{sin}\alpha−{cos}\alpha=\mathrm{2}{n}−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− \\ $$$${Suppose}\:{we}\:{write}\:+\:{in}\:{place}\:{of}\:\mp. \\ $$$$\therefore\:{sin}\alpha−{cos}\alpha=\frac{\mathrm{4}{n}−\mathrm{1}}{\mathrm{2}} \\ $$$$\sqrt{\mathrm{2}}{sin}\left(\alpha−\frac{\pi}{\mathrm{4}}\right)=\frac{\mathrm{4}{n}−\mathrm{1}}{\mathrm{2}} \\ $$$${sin}\left(\alpha−\frac{\pi}{\mathrm{4}}\right)=\frac{\mathrm{4}{n}−\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}} \\ $$$${Since}\:\mid{sin}\left(\alpha−\frac{\pi}{\mathrm{4}}\right)\mid\leqslant\mathrm{1} \\ $$$$\Rightarrow\mid\frac{\mathrm{4}{n}−\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\mid\leqslant\mathrm{1}\Rightarrow\mid\mathrm{4}{n}−\mathrm{1}\mid\leqslant\mathrm{2}\sqrt{\mathrm{2}}<\mathrm{4} \\ $$$$\Rightarrow−\mathrm{4}<\mathrm{4}{n}−\mathrm{1}<\mathrm{4} \\ $$$$−\mathrm{3}<\mathrm{4}{n}<\mathrm{5} \\ $$$$−\frac{\mathrm{3}}{\mathrm{4}}<{n}<\frac{\mathrm{5}}{\mathrm{4}}\:\:{for}\:{n}\in\mathbb{Z}\Rightarrow{n}=\mathrm{0}\:{or}\:\mathrm{1}. \\ $$$${For}\:{n}=\mathrm{0},\:\:{sin}\left(\alpha−\frac{\pi}{\mathrm{4}}\right)=\frac{−\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}} \\ $$$$\Rightarrow{sin}^{\mathrm{2}} \left(\alpha−\frac{\pi}{\mathrm{4}}\right)=\frac{\mathrm{1}}{\mathrm{8}} \\ $$$$\Rightarrow\frac{\mathrm{1}−{cos}\left(\mathrm{2}\alpha−\frac{\pi}{\mathrm{2}}\right)}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{8}} \\ $$$$\Rightarrow{cos}\left(−\left(\mathrm{2}\alpha−\frac{\pi}{\mathrm{2}}\right)\right)=\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\Rightarrow{sin}\mathrm{2}\alpha=\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\Rightarrow\alpha=\frac{\mathrm{1}}{\mathrm{2}}{sin}^{−\mathrm{1}} \frac{\mathrm{3}}{\mathrm{4}} \\ $$$${Suppose}\:{n}=\mathrm{1}.\:\therefore{sin}\left(\alpha−\mathrm{0}.\mathrm{25}\pi\right)=\frac{\mathrm{3}}{\mathrm{2}\sqrt{\mathrm{2}}} \\ $$$${But},\:{sin}^{\mathrm{2}} \left(\alpha−\mathrm{0}.\mathrm{25}\pi\right)=\frac{\mathrm{9}}{\mathrm{8}}>\mathrm{1}. \\ $$$${Hence},\:{n}\neq\mathrm{1}. \\ $$$$−−−−−−−−−−−−−−−−−−−−−−−−− \\ $$$${Suppose}\:{we}\:{write}\:−\:{in}\:{place}\:{of}\:\mp.\: \\ $$$${We}\:{must}\:{have}\:{n}=\mathrm{0}. \\ $$$$\therefore\:−{sin}\alpha−{cos}\alpha=\frac{−\mathrm{1}}{\mathrm{2}} \\ $$$$\sqrt{\mathrm{2}}{sin}\left(\alpha+\frac{\pi}{\mathrm{4}}\right)=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow{sin}^{\mathrm{2}} \left(\alpha+\frac{\pi}{\mathrm{4}}\right)=\frac{\mathrm{1}}{\mathrm{8}} \\ $$$$\Rightarrow\frac{\mathrm{1}−{cos}\left(\mathrm{2}\alpha+\pi/\mathrm{2}\right)}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{8}} \\ $$$$\therefore\:{cos}\left(\mathrm{2}\alpha+\frac{\pi}{\mathrm{2}}\right)=\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$−{sin}\mathrm{2}\alpha=\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\Rightarrow\alpha=\frac{−\mathrm{1}}{\mathrm{2}}{sin}^{−\mathrm{1}} \frac{\mathrm{3}}{\mathrm{4}} \\ $$$$−−−−−−−−−−−−−−−−−−−−− \\ $$$$\therefore\:\alpha=\pm\frac{\mathrm{1}}{\mathrm{2}}{sin}^{−\mathrm{1}} \frac{\mathrm{3}}{\mathrm{4}}\:{if}\:{sin}\left(\pi{cos}\alpha\right)={cos}\left(\pi{sin}\alpha\right). \\ $$$${Generally},\:\alpha=\mathrm{2}{n}\pi\pm\frac{\mathrm{1}}{\mathrm{2}}{sin}^{−\mathrm{1}} \frac{\mathrm{3}}{\mathrm{4}}\:{since} \\ $$$${sinu}={sin}\left({u}+\mathrm{2}{n}\pi\right)\:{and}\:{cosk}={cos}\left({k}+\mathrm{2}{n}\pi\right)\: \\ $$$${for}\:{any}\:{u},{k}\in\mathbb{R}. \\ $$

Commented by Tawakalitu. last updated on 01/Sep/16

Wow, thanks so much.

$${Wow},\:{thanks}\:{so}\:{much}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com