Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 75141 by chess1 last updated on 07/Dec/19

Commented by chess1 last updated on 08/Dec/19

solve please

solveplease

Commented by chess1 last updated on 08/Dec/19

Sir  mathmax  , sir mind is power

Sirmathmax,sirmindispower

Answered by mind is power last updated on 08/Dec/19

∫ln(z−a)dz=(z−a)ln(z−a)−z  ⇒∫_e ^(x+y+e) ((ln(z−x−y))/((x−e)(x+y−e)))dz=(([(z−x−y)ln(z−x−y)−z]_e ^(x+y+e) )/((x−e)(x+y−e)))  =((e−(x+y+e)−(e−x−y)ln(e−x−y)+e)/((x−e)(e−x−y)))  =((1−ln(e−x−y))/(x−e))  ∫_0 ^(e−x−1) ((1−ln(e−x−y))/(x−e))dy=(1/(x−e))∫_0 ^(e−x−1) (1−ln(e−x−y))dy  =(1/(x−e))[y+(e−x−y)ln(e−x−y)+y]_0 ^(e−x−1)   =(1/(x−e))[2(e−x−1)−(e−x)ln(e−x)]  =2−(2/(x−e))−ln(e−x)  ∫_0 ^(e−1) (2−(2/(x−e))−ln(e−x))dx=[2x−2ln∣x−e∣+(e−x)ln(e−x)+x]_0 ^(e−1)   =3(e−1)+2−e=2e−1

ln(za)dz=(za)ln(za)zex+y+eln(zxy)(xe)(x+ye)dz=[(zxy)ln(zxy)z]ex+y+e(xe)(x+ye)=e(x+y+e)(exy)ln(exy)+e(xe)(exy)=1ln(exy)xe0ex11ln(exy)xedy=1xe0ex1(1ln(exy))dy=1xe[y+(exy)ln(exy)+y]0ex1=1xe[2(ex1)(ex)ln(ex)]=22xeln(ex)0e1(22xeln(ex))dx=[2x2lnxe+(ex)ln(ex)+x]0e1=3(e1)+2e=2e1

Commented by chess1 last updated on 08/Dec/19

great!

great!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com