Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 7524 by Little last updated on 02/Sep/16

If  a, b, c  are in AP;  b, c, d  are in GP and  c, d, e  are in HP, then a, c, e are in

$$\mathrm{If}\:\:{a},\:{b},\:{c}\:\:\mathrm{are}\:\mathrm{in}\:\mathrm{AP};\:\:{b},\:{c},\:{d}\:\:\mathrm{are}\:\mathrm{in}\:\mathrm{GP}\:\mathrm{and} \\ $$$${c},\:{d},\:{e}\:\:\mathrm{are}\:\mathrm{in}\:\mathrm{HP},\:\mathrm{then}\:{a},\:{c},\:{e}\:\mathrm{are}\:\mathrm{in} \\ $$

Commented by Rasheed Soomro last updated on 02/Sep/16

Complete Answer  If  a, b, c  are in AP;  b, c, d  are in GP and  c, d, e  are in HP, then a, c, e are in  −−−−−−−−−−−−−−−−−−−   a,b,c are in AP :  c=a+2d ′=a+2(b−a)=2b−a [d ′ is common difference]  b,c,d are in GP :  d=br^2 =b(c/b)^2 =c^2 /b =(((2b−a)^2 )/b) [r is common ratio]  c,d,e are in HP ⇒d=((2ce)/(c+e))⇒e=(dc/(2c−d))  e=(dc/(2c−d))=(((((2b−a)^2 )/b)×(2b−a))/(2(2b−a)−(((2b−a)^2 )/b)))=((((2b−a)^3 )/b)/((2b(2b−a)−(2b−a)^2 )/b))                                                            =(((2b−a)^3 )/((2b−a)[2b−2b+a]))=(((2b−a)^2 )/a)  a,c,e  a,2b−a, (((2b−a)^2 )/a)  Let′s  assume that this is GP  Testing for common ratio  ((2b−a)/a)=^(?) ((((2b−a)^2 )/a)/(2b−a))  ((2b−a)/a) =^(?) (((2b−a)^2 )/a)×(1/(2b−a))  ((2b−a)/a) =((2b−a)/a)  Hence a,2b−a, (((2b−a)^2 )/a)   is  a GP,whose common ratio  is ((2b−a)/a)  Or    a ,  c  ,  e   are in GP

$${Complete}\:{Answer} \\ $$$$\mathrm{If}\:\:{a},\:{b},\:{c}\:\:\mathrm{are}\:\mathrm{in}\:\mathrm{AP};\:\:{b},\:{c},\:{d}\:\:\mathrm{are}\:\mathrm{in}\:\mathrm{GP}\:\mathrm{and} \\ $$$${c},\:{d},\:{e}\:\:\mathrm{are}\:\mathrm{in}\:\mathrm{HP},\:\mathrm{then}\:{a},\:{c},\:{e}\:\mathrm{are}\:\mathrm{in} \\ $$$$−−−−−−−−−−−−−−−−−−− \\ $$$$\:{a},{b},{c}\:{are}\:{in}\:{AP}\:: \\ $$$${c}={a}+\mathrm{2}{d}\:'={a}+\mathrm{2}\left({b}−{a}\right)=\mathrm{2}{b}−{a}\:\left[{d}\:'\:{is}\:{common}\:{difference}\right] \\ $$$${b},{c},{d}\:{are}\:{in}\:{GP}\:: \\ $$$${d}={br}^{\mathrm{2}} ={b}\left({c}/{b}\right)^{\mathrm{2}} ={c}^{\mathrm{2}} /{b}\:=\frac{\left(\mathrm{2}{b}−{a}\right)^{\mathrm{2}} }{{b}}\:\left[{r}\:{is}\:{common}\:{ratio}\right] \\ $$$${c},{d},{e}\:{are}\:{in}\:{HP}\:\Rightarrow{d}=\frac{\mathrm{2}{ce}}{{c}+{e}}\Rightarrow{e}=\frac{{dc}}{\mathrm{2}{c}−{d}} \\ $$$${e}=\frac{{dc}}{\mathrm{2}{c}−{d}}=\frac{\frac{\left(\mathrm{2}{b}−{a}\right)^{\mathrm{2}} }{{b}}×\left(\mathrm{2}{b}−{a}\right)}{\mathrm{2}\left(\mathrm{2}{b}−{a}\right)−\frac{\left(\mathrm{2}{b}−{a}\right)^{\mathrm{2}} }{{b}}}=\frac{\frac{\left(\mathrm{2}{b}−{a}\right)^{\mathrm{3}} }{{b}}}{\frac{\mathrm{2}{b}\left(\mathrm{2}{b}−{a}\right)−\left(\mathrm{2}{b}−{a}\right)^{\mathrm{2}} }{{b}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\left(\mathrm{2}{b}−{a}\right)^{\mathrm{3}} }{\left(\mathrm{2}{b}−{a}\right)\left[\mathrm{2}{b}−\mathrm{2}{b}+{a}\right]}=\frac{\left(\mathrm{2}{b}−{a}\right)^{\mathrm{2}} }{{a}} \\ $$$${a},{c},{e} \\ $$$${a},\mathrm{2}{b}−{a},\:\frac{\left(\mathrm{2}{b}−{a}\right)^{\mathrm{2}} }{{a}} \\ $$$${Let}'{s}\:\:{assume}\:{that}\:{this}\:{is}\:{GP} \\ $$$${Testing}\:{for}\:{common}\:{ratio} \\ $$$$\frac{\mathrm{2}{b}−{a}}{{a}}\overset{?} {=}\frac{\frac{\left(\mathrm{2}{b}−{a}\right)^{\mathrm{2}} }{{a}}}{\mathrm{2}{b}−{a}} \\ $$$$\frac{\mathrm{2}{b}−{a}}{{a}}\:\overset{?} {=}\frac{\left(\mathrm{2}{b}−{a}\right)^{\mathrm{2}} }{{a}}×\frac{\mathrm{1}}{\mathrm{2}{b}−{a}} \\ $$$$\frac{\mathrm{2}{b}−{a}}{{a}}\:=\frac{\mathrm{2}{b}−{a}}{{a}} \\ $$$${Hence}\:{a},\mathrm{2}{b}−{a},\:\frac{\left(\mathrm{2}{b}−{a}\right)^{\mathrm{2}} }{{a}}\:\:\:{is}\:\:{a}\:{GP},{whose}\:{common}\:{ratio} \\ $$$${is}\:\frac{\mathrm{2}{b}−{a}}{{a}} \\ $$$${Or}\:\:\:\:{a}\:,\:\:{c}\:\:,\:\:{e}\:\:\:{are}\:{in}\:{GP} \\ $$

Answered by Rasheed Soomro last updated on 07/Sep/16

Answer is in comment.

$${Answer}\:{is}\:{in}\:{comment}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com