Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 75230 by aliesam last updated on 08/Dec/19

Commented by mathmax by abdo last updated on 08/Dec/19

e^(1/x) =1+(1/x) +o((1/x^2 )) ⇒x e^(1/x) =x+1+o((1/x))  (x→+∞)  e^(1/(x+1)) =1+(1/(x+1)) +o((1/x^2 )) ⇒(x+1)e^(1/(x+1)) =x+1+1+o((1/x)) ⇒  (x+1)e^(1/(x+1)) −xe^(1/x) =x+2 −x−1 +o((1/x))=1+o((1/x)) ⇒  lim_(x→+∞) { (x+1)e^(1/(x+1))  −x e^(1/x) } =1

$${e}^{\frac{\mathrm{1}}{{x}}} =\mathrm{1}+\frac{\mathrm{1}}{{x}}\:+{o}\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)\:\Rightarrow{x}\:{e}^{\frac{\mathrm{1}}{{x}}} ={x}+\mathrm{1}+{o}\left(\frac{\mathrm{1}}{{x}}\right)\:\:\left({x}\rightarrow+\infty\right) \\ $$$${e}^{\frac{\mathrm{1}}{{x}+\mathrm{1}}} =\mathrm{1}+\frac{\mathrm{1}}{{x}+\mathrm{1}}\:+{o}\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)\:\Rightarrow\left({x}+\mathrm{1}\right){e}^{\frac{\mathrm{1}}{{x}+\mathrm{1}}} ={x}+\mathrm{1}+\mathrm{1}+{o}\left(\frac{\mathrm{1}}{{x}}\right)\:\Rightarrow \\ $$$$\left({x}+\mathrm{1}\right){e}^{\frac{\mathrm{1}}{{x}+\mathrm{1}}} −{xe}^{\frac{\mathrm{1}}{{x}}} ={x}+\mathrm{2}\:−{x}−\mathrm{1}\:+{o}\left(\frac{\mathrm{1}}{{x}}\right)=\mathrm{1}+{o}\left(\frac{\mathrm{1}}{{x}}\right)\:\Rightarrow \\ $$$${lim}_{{x}\rightarrow+\infty} \left\{\:\left({x}+\mathrm{1}\right){e}^{\frac{\mathrm{1}}{{x}+\mathrm{1}}} \:−{x}\:{e}^{\frac{\mathrm{1}}{{x}}} \right\}\:=\mathrm{1} \\ $$

Answered by mind is power last updated on 08/Dec/19

let f(z)=ze^(1/z)   by mean value theorem  ∃c∈]x,x+1[  f(x+1)−f(x)=f′(c)  f′(c)=e^(1/c) −(e^(1/c) /c)  since c>x⇒x→+∞,c→+∞  f′(c)→1  ⇒lim((x+1)e^(1/(x+1)) −xe^(1/x) )→1

$$\mathrm{let}\:\mathrm{f}\left(\mathrm{z}\right)=\mathrm{ze}^{\frac{\mathrm{1}}{\mathrm{z}}} \\ $$$${by}\:{mean}\:{value}\:{theorem} \\ $$$$\left.\exists\mathrm{c}\in\right]\mathrm{x},\mathrm{x}+\mathrm{1}\left[\right. \\ $$$$\mathrm{f}\left(\mathrm{x}+\mathrm{1}\right)−\mathrm{f}\left(\mathrm{x}\right)=\mathrm{f}'\left(\mathrm{c}\right) \\ $$$$\mathrm{f}'\left(\mathrm{c}\right)=\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{c}}} −\frac{\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{c}}} }{\mathrm{c}} \\ $$$$\mathrm{since}\:\mathrm{c}>\mathrm{x}\Rightarrow\mathrm{x}\rightarrow+\infty,\mathrm{c}\rightarrow+\infty \\ $$$$\mathrm{f}'\left(\mathrm{c}\right)\rightarrow\mathrm{1} \\ $$$$\Rightarrow\mathrm{lim}\left(\left(\mathrm{x}+\mathrm{1}\right)\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{x}+\mathrm{1}}} −\mathrm{xe}^{\frac{\mathrm{1}}{\mathrm{x}}} \right)\rightarrow\mathrm{1} \\ $$

Commented by aliesam last updated on 08/Dec/19

thank you sir

$${thank}\:{you}\:{sir}\: \\ $$

Commented by mind is power last updated on 08/Dec/19

y′re welcom

$$\mathrm{y}'\mathrm{re}\:\mathrm{welcom} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com