Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 75301 by vishalbhardwaj last updated on 09/Dec/19

Find S_n  and S_∞  of the series : (1/(1.2.3.4)) + (1/(2.3.4.5)) + (1/(3.4.5.6)) + . . .

$$\mathrm{Find}\:\mathrm{S}_{\mathrm{n}} \:\mathrm{and}\:\mathrm{S}_{\infty} \:\mathrm{of}\:\mathrm{the}\:\mathrm{series}\::\:\frac{\mathrm{1}}{\mathrm{1}.\mathrm{2}.\mathrm{3}.\mathrm{4}}\:+\:\frac{\mathrm{1}}{\mathrm{2}.\mathrm{3}.\mathrm{4}.\mathrm{5}}\:+\:\frac{\mathrm{1}}{\mathrm{3}.\mathrm{4}.\mathrm{5}.\mathrm{6}}\:+\:.\:.\:. \\ $$

Commented by vishalbhardwaj last updated on 09/Dec/19

please solve this

$$\mathrm{please}\:\mathrm{solve}\:\mathrm{this} \\ $$

Commented by vishalbhardwaj last updated on 09/Dec/19

please solve this

$$\mathrm{please}\:\mathrm{solve}\:\mathrm{this} \\ $$

Commented by mind is power last updated on 09/Dec/19

=Σ_(k≥1) (1/(k(k+1)(k+2)(k+3)))  =(1/2)Σ{(1/(k(k+3)))−(1/((k+1)(k+2)))}  =(1/6)Σ(((k+3)−k)/(k(k+3)))−(1/2)Σ(((k+2)−(k+1))/((k+1)(k+2)))  =(1/6)Σ((1/k)−(1/(k+3)))−(1/2)Σ((1/(k+1))−(1/(k+2)))  S_N =Σ_(k=1) ^N ((1/(k(k+1)(k+2)(k+3)))  =(1/6)Σ_(k=1) ^(1N) ((1/k)−(1/(k+3)))−(1/2)Σ_(k=1) ^N ((1/(k+1))−(1/(k+2)))  =(1/6)(Σ_(k=1) ^N (1/k)−Σ_(k=4) ^(N+3) (1/k))−(1/2)(Σ_(k=1) ^N (1/(k+1))−Σ_(k=2) ^(N+1) (1/(k+1)))  =(1/6)(1+(1/2)+(1/3)−(1/(N+1))−(1/(N+2))−(1/(N+3)))−(1/2)((1/2)−(1/(N+2)))  lim_(N→∞) S_N =(1/6)(((11)/6))−(1/4)=(2/(36))=(1/(18))

$$=\underset{\mathrm{k}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{1}}{\mathrm{k}\left(\mathrm{k}+\mathrm{1}\right)\left(\mathrm{k}+\mathrm{2}\right)\left(\mathrm{k}+\mathrm{3}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\Sigma\left\{\frac{\mathrm{1}}{\mathrm{k}\left(\mathrm{k}+\mathrm{3}\right)}−\frac{\mathrm{1}}{\left(\mathrm{k}+\mathrm{1}\right)\left(\mathrm{k}+\mathrm{2}\right)}\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{6}}\Sigma\frac{\left(\mathrm{k}+\mathrm{3}\right)−\mathrm{k}}{\mathrm{k}\left(\mathrm{k}+\mathrm{3}\right)}−\frac{\mathrm{1}}{\mathrm{2}}\Sigma\frac{\left(\mathrm{k}+\mathrm{2}\right)−\left(\mathrm{k}+\mathrm{1}\right)}{\left(\mathrm{k}+\mathrm{1}\right)\left(\mathrm{k}+\mathrm{2}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{6}}\Sigma\left(\frac{\mathrm{1}}{\mathrm{k}}−\frac{\mathrm{1}}{\mathrm{k}+\mathrm{3}}\right)−\frac{\mathrm{1}}{\mathrm{2}}\Sigma\left(\frac{\mathrm{1}}{\mathrm{k}+\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{k}+\mathrm{2}}\right) \\ $$$$\mathrm{S}_{\mathrm{N}} =\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{N}} {\sum}}\left(\frac{\mathrm{1}}{\mathrm{k}\left(\mathrm{k}+\mathrm{1}\right)\left(\mathrm{k}+\mathrm{2}\right)\left(\mathrm{k}+\mathrm{3}\right.}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{6}}\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{1N}} {\sum}}\left(\frac{\mathrm{1}}{\mathrm{k}}−\frac{\mathrm{1}}{\mathrm{k}+\mathrm{3}}\right)−\frac{\mathrm{1}}{\mathrm{2}}\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{N}} {\sum}}\left(\frac{\mathrm{1}}{\mathrm{k}+\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{k}+\mathrm{2}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{6}}\left(\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{N}} {\sum}}\frac{\mathrm{1}}{\mathrm{k}}−\underset{\mathrm{k}=\mathrm{4}} {\overset{\mathrm{N}+\mathrm{3}} {\sum}}\frac{\mathrm{1}}{\mathrm{k}}\right)−\frac{\mathrm{1}}{\mathrm{2}}\left(\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{N}} {\sum}}\frac{\mathrm{1}}{\mathrm{k}+\mathrm{1}}−\underset{\mathrm{k}=\mathrm{2}} {\overset{\mathrm{N}+\mathrm{1}} {\sum}}\frac{\mathrm{1}}{\mathrm{k}+\mathrm{1}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{6}}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{N}+\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{N}+\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{N}+\mathrm{3}}\right)−\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{N}+\mathrm{2}}\right) \\ $$$$\underset{\mathrm{N}\rightarrow\infty} {\mathrm{lim}S}_{\mathrm{N}} =\frac{\mathrm{1}}{\mathrm{6}}\left(\frac{\mathrm{11}}{\mathrm{6}}\right)−\frac{\mathrm{1}}{\mathrm{4}}=\frac{\mathrm{2}}{\mathrm{36}}=\frac{\mathrm{1}}{\mathrm{18}} \\ $$$$ \\ $$

Commented by peter frank last updated on 09/Dec/19

thank you

$${thank}\:{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com