Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 75351 by TawaTawa last updated on 10/Dec/19

Answered by MJS last updated on 10/Dec/19

v=v_0 −at  s=∫vdt=∫(v_0 −at)dt=v_0 t−(a/2)t^2   (a)  maximum height when v=0          0=v_0 −at ⇒ t=(v_0 /a)  (b)  maximum height at t=(v_0 /a)          s=v_0 (v_0 /a)−(a/2)((v_0 /a))^2 =(v_0 ^2 /(2a))  (c) i.  5=v_0 −at ⇒ t=((v_0 −5)/a)       ii.  −5=v_0 −at ⇒ t=((v_0 +5)/a)      iii.  s=(v_0 ^2 /(4a))             v_0 t−(a/2)t^2 =(v_0 ^2 /(4a)) ⇒ t=(v_0 /a)(1±((√2)/2))             we need the −value because the ball             rises first             t=(v_0 /a)(1−((√2)/2))  (d)  the acceleration is constant  (e)  the speed at t=(v_0 /a)(1±((√2)/2))          v=v_0 −a(v_0 /a)(1±((√2)/2))=±v_0 ((√2)/2)    now put v_0 =27(m/s) and a=g=9.80665(m/s^2 ) or  g=9.81(m/s^2 ) or 10(m/s^2 ), not sure which value you  usually take

$${v}={v}_{\mathrm{0}} −{at} \\ $$$${s}=\int{vdt}=\int\left({v}_{\mathrm{0}} −{at}\right){dt}={v}_{\mathrm{0}} {t}−\frac{{a}}{\mathrm{2}}{t}^{\mathrm{2}} \\ $$$$\left({a}\right)\:\:\mathrm{maximum}\:\mathrm{height}\:\mathrm{when}\:{v}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{0}={v}_{\mathrm{0}} −{at}\:\Rightarrow\:{t}=\frac{{v}_{\mathrm{0}} }{{a}} \\ $$$$\left({b}\right)\:\:\mathrm{maximum}\:\mathrm{height}\:\mathrm{at}\:{t}=\frac{{v}_{\mathrm{0}} }{{a}} \\ $$$$\:\:\:\:\:\:\:\:{s}={v}_{\mathrm{0}} \frac{{v}_{\mathrm{0}} }{{a}}−\frac{{a}}{\mathrm{2}}\left(\frac{{v}_{\mathrm{0}} }{{a}}\right)^{\mathrm{2}} =\frac{{v}_{\mathrm{0}} ^{\mathrm{2}} }{\mathrm{2}{a}} \\ $$$$\left({c}\right)\:{i}.\:\:\mathrm{5}={v}_{\mathrm{0}} −{at}\:\Rightarrow\:{t}=\frac{{v}_{\mathrm{0}} −\mathrm{5}}{{a}} \\ $$$$\:\:\:\:\:{ii}.\:\:−\mathrm{5}={v}_{\mathrm{0}} −{at}\:\Rightarrow\:{t}=\frac{{v}_{\mathrm{0}} +\mathrm{5}}{{a}} \\ $$$$\:\:\:\:{iii}.\:\:{s}=\frac{{v}_{\mathrm{0}} ^{\mathrm{2}} }{\mathrm{4}{a}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{v}_{\mathrm{0}} {t}−\frac{{a}}{\mathrm{2}}{t}^{\mathrm{2}} =\frac{{v}_{\mathrm{0}} ^{\mathrm{2}} }{\mathrm{4}{a}}\:\Rightarrow\:{t}=\frac{{v}_{\mathrm{0}} }{{a}}\left(\mathrm{1}\pm\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{we}\:\mathrm{need}\:\mathrm{the}\:−\mathrm{value}\:\mathrm{because}\:\mathrm{the}\:\mathrm{ball} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{rises}\:\mathrm{first} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{t}=\frac{{v}_{\mathrm{0}} }{{a}}\left(\mathrm{1}−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right) \\ $$$$\left({d}\right)\:\:\mathrm{the}\:\mathrm{acceleration}\:\mathrm{is}\:\mathrm{constant} \\ $$$$\left({e}\right)\:\:\mathrm{the}\:\mathrm{speed}\:\mathrm{at}\:{t}=\frac{{v}_{\mathrm{0}} }{{a}}\left(\mathrm{1}\pm\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right) \\ $$$$\:\:\:\:\:\:\:\:{v}={v}_{\mathrm{0}} −{a}\frac{{v}_{\mathrm{0}} }{{a}}\left(\mathrm{1}\pm\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right)=\pm{v}_{\mathrm{0}} \frac{\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{now}\:\mathrm{put}\:{v}_{\mathrm{0}} =\mathrm{27}\frac{{m}}{{s}}\:\mathrm{and}\:{a}={g}=\mathrm{9}.\mathrm{80665}\frac{{m}}{{s}^{\mathrm{2}} }\:\mathrm{or} \\ $$$${g}=\mathrm{9}.\mathrm{81}\frac{{m}}{{s}^{\mathrm{2}} }\:\mathrm{or}\:\mathrm{10}\frac{{m}}{{s}^{\mathrm{2}} },\:\mathrm{not}\:\mathrm{sure}\:\mathrm{which}\:\mathrm{value}\:\mathrm{you} \\ $$$$\mathrm{usually}\:\mathrm{take} \\ $$

Commented by TawaTawa last updated on 10/Dec/19

God bless you sir,  thanks for your time

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir},\:\:\mathrm{thanks}\:\mathrm{for}\:\mathrm{your}\:\mathrm{time} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com