Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 75403 by TawaTawa last updated on 10/Dec/19

Answered by mind is power last updated on 10/Dec/19

=(Σ_(m≥0) (1/((2m+1)^6 )))(Σ_(n=1) ^(+∞) (((−1)^(n+1) )/(4n^2 −1)))  Σ_(n≥1) (((−1)^(n+1) )/((2n−1)(2n+1)))=Σ_(n≥1) (((−1)^(n+1) )/(4n^2 −1))  =(1/2){Σ_(n≥1) (((−1)^(n+1) )/((2n−1)))+Σ_(n≥1) (((−1)^(n+2) )/(2n+1))}  =(1/2)+{Σ_(n≥1) (((−1)^(n+2) )/(2n+1))}  =(1/2)+Σ_(n≥1) (((−1)^n )/(2n+1))  (1/(1+x^2 ))=Σ_(k≥0) (−x^2 )^k ⇒∫(1/(1+x^2 ))=Σ_(k≥0) (((−1)^k )/(2k+1))x^(2k+1)   ⇒Σ_(k≥0) (((−1)^k )/(2k+1))=arctan(1)=(π/4)  ⇒Σ_(k≥1) (((−1)^k )/(2k+1))=(π/4)−1  ⇒Σ_(n≥1) (1/(4n^2 −1))=(π/4)−(1/2)=((π−2)/4)  ζ(6)=Σ_(k≥1) (1/k^6 )=(π^6 /(945))  ⇒Σ_(k≥1) (1/((2k+1)^6 ))=ζ(6)−(1/2^6 )ζ(6)=(((2^6 −1)/2^6 )).(π^6 /(945))=((63π^6 )/(64.945))=(π^6 /(960))  ⇒Σ_(m≥0) Σ_(n≥1) (1/((2m+1)^6 )).(((−1)^(n+1) )/(4n^2 −1))=(π^6 /(960)).((π−2)/4)=((π^6 (π−2))/(3840))

=(m01(2m+1)6)(+n=1(1)n+14n21)n1(1)n+1(2n1)(2n+1)=n1(1)n+14n21=12{n1(1)n+1(2n1)+n1(1)n+22n+1}=12+{n1(1)n+22n+1}=12+n1(1)n2n+111+x2=k0(x2)k11+x2=k0(1)k2k+1x2k+1k0(1)k2k+1=arctan(1)=π4k1(1)k2k+1=π41n114n21=π412=π24ζ(6)=k11k6=π6945k11(2k+1)6=ζ(6)126ζ(6)=(26126).π6945=63π664.945=π6960m0n11(2m+1)6.(1)n+14n21=π6960.π24=π6(π2)3840

Commented by TawaTawa last updated on 10/Dec/19

God bless you sir, i appreciate your time

Godblessyousir,iappreciateyourtime

Commented by mind is power last updated on 10/Dec/19

y′re Welcom

yreWelcom

Commented by feli last updated on 11/Dec/19

pls how can i contact you on whatsapp sir  mind is power

plshowcanicontactyouonwhatsappsirmindispower

Terms of Service

Privacy Policy

Contact: info@tinkutara.com