Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 75435 by Crabby89p13 last updated on 11/Dec/19

solve the integral with Residue theorem.  ∫_0 ^(2π) ((3 dθ)/(9 +sin^2 θ))

$${solve}\:{the}\:{integral}\:{with}\:{Residue}\:{theorem}. \\ $$$$\underset{\mathrm{0}} {\overset{\mathrm{2}\pi} {\int}}\frac{\mathrm{3}\:{d}\theta}{\mathrm{9}\:+\mathrm{sin}^{\mathrm{2}} \theta} \\ $$

Commented by mathmax by abdo last updated on 11/Dec/19

I =∫_0 ^(2π)  ((3dθ)/(9+sin^2 θ)) ⇒I =∫_0 ^(2π)  ((3dθ)/(9+((1−cos(2θ))/2))) =∫_0 ^(2π)  ((6dθ)/(18+1−cos(2θ)))  =_(2θ =t)     ∫_0 ^(4π)    (6/(19−cost))(dt/2) =3 ∫_0 ^(4π)   (dt/(19−cost))  =3{ ∫_0 ^(2π)  (dt/(19−cost)) +∫_(2π) ^(4π)  (dt/(19−cost))} but  ∫_(2π) ^(4π)  (dt/(19−cost)) =_(t=2π +u)   ∫_0 ^(2π)  (du/(19−cosu)) ⇒I =6 ∫_0 ^(2π)  (dt/(19−cost))  we have ∫_0 ^(2π)  (dt/(19−cost)) =_(e^(it) =z)    ∫_(∣z∣=1)    (1/(19−((z+z^(−1) )/2)))(dz/(iz))  =∫_(∣z∣=1)     ((2dz)/(iz{38−z−z^(−1) })) =∫_(∣z∣=1)    ((−2idz)/(38z−z^2 −1))  =∫_(∣z∣=1)      ((2idz)/(z^2 −38z +1))  let W(z)=((2i)/(z^2 −38z +1))  poles of W?  z^2 −38z +1=0→Δ^′ =19^2 −1 =360  z_1 =19+6(√(10))    and z_2 =19−6(√(10))  ∣z_1 ∣−1 =18+6(√(10))>0    (z_1 is out of circle)  ∣z_2 ∣−1 =18−6(√(10))  <0   ⇒  ∫_(∣z∣=1) W(z)dz =2iπ Res(W,z_2 ) =2iπ×((2i)/((z_2 −z_1 )))  =((−4π)/(−12(√(10)))) =(π/(3(√(10)))) ⇒ I =6×(π/(3(√(10)))) =((2π)/(√(10)))

$${I}\:=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\frac{\mathrm{3}{d}\theta}{\mathrm{9}+{sin}^{\mathrm{2}} \theta}\:\Rightarrow{I}\:=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\frac{\mathrm{3}{d}\theta}{\mathrm{9}+\frac{\mathrm{1}−{cos}\left(\mathrm{2}\theta\right)}{\mathrm{2}}}\:=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\frac{\mathrm{6}{d}\theta}{\mathrm{18}+\mathrm{1}−{cos}\left(\mathrm{2}\theta\right)} \\ $$$$=_{\mathrm{2}\theta\:={t}} \:\:\:\:\int_{\mathrm{0}} ^{\mathrm{4}\pi} \:\:\:\frac{\mathrm{6}}{\mathrm{19}−{cost}}\frac{{dt}}{\mathrm{2}}\:=\mathrm{3}\:\int_{\mathrm{0}} ^{\mathrm{4}\pi} \:\:\frac{{dt}}{\mathrm{19}−{cost}} \\ $$$$=\mathrm{3}\left\{\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\frac{{dt}}{\mathrm{19}−{cost}}\:+\int_{\mathrm{2}\pi} ^{\mathrm{4}\pi} \:\frac{{dt}}{\mathrm{19}−{cost}}\right\}\:{but} \\ $$$$\int_{\mathrm{2}\pi} ^{\mathrm{4}\pi} \:\frac{{dt}}{\mathrm{19}−{cost}}\:=_{{t}=\mathrm{2}\pi\:+{u}} \:\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\frac{{du}}{\mathrm{19}−{cosu}}\:\Rightarrow{I}\:=\mathrm{6}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\frac{{dt}}{\mathrm{19}−{cost}} \\ $$$${we}\:{have}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\frac{{dt}}{\mathrm{19}−{cost}}\:=_{{e}^{{it}} ={z}} \:\:\:\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\frac{\mathrm{1}}{\mathrm{19}−\frac{{z}+{z}^{−\mathrm{1}} }{\mathrm{2}}}\frac{{dz}}{{iz}} \\ $$$$=\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\:\frac{\mathrm{2}{dz}}{{iz}\left\{\mathrm{38}−{z}−{z}^{−\mathrm{1}} \right\}}\:=\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\frac{−\mathrm{2}{idz}}{\mathrm{38}{z}−{z}^{\mathrm{2}} −\mathrm{1}} \\ $$$$=\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\:\:\frac{\mathrm{2}{idz}}{{z}^{\mathrm{2}} −\mathrm{38}{z}\:+\mathrm{1}}\:\:{let}\:{W}\left({z}\right)=\frac{\mathrm{2}{i}}{{z}^{\mathrm{2}} −\mathrm{38}{z}\:+\mathrm{1}}\:\:{poles}\:{of}\:{W}? \\ $$$${z}^{\mathrm{2}} −\mathrm{38}{z}\:+\mathrm{1}=\mathrm{0}\rightarrow\Delta^{'} =\mathrm{19}^{\mathrm{2}} −\mathrm{1}\:=\mathrm{360} \\ $$$${z}_{\mathrm{1}} =\mathrm{19}+\mathrm{6}\sqrt{\mathrm{10}}\:\:\:\:{and}\:{z}_{\mathrm{2}} =\mathrm{19}−\mathrm{6}\sqrt{\mathrm{10}} \\ $$$$\mid{z}_{\mathrm{1}} \mid−\mathrm{1}\:=\mathrm{18}+\mathrm{6}\sqrt{\mathrm{10}}>\mathrm{0}\:\:\:\:\left({z}_{\mathrm{1}} {is}\:{out}\:{of}\:{circle}\right) \\ $$$$\mid{z}_{\mathrm{2}} \mid−\mathrm{1}\:=\mathrm{18}−\mathrm{6}\sqrt{\mathrm{10}}\:\:<\mathrm{0}\:\:\:\Rightarrow \\ $$$$\int_{\mid{z}\mid=\mathrm{1}} {W}\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left({W},{z}_{\mathrm{2}} \right)\:=\mathrm{2}{i}\pi×\frac{\mathrm{2}{i}}{\left({z}_{\mathrm{2}} −{z}_{\mathrm{1}} \right)} \\ $$$$=\frac{−\mathrm{4}\pi}{−\mathrm{12}\sqrt{\mathrm{10}}}\:=\frac{\pi}{\mathrm{3}\sqrt{\mathrm{10}}}\:\Rightarrow\:{I}\:=\mathrm{6}×\frac{\pi}{\mathrm{3}\sqrt{\mathrm{10}}}\:=\frac{\mathrm{2}\pi}{\sqrt{\mathrm{10}}} \\ $$$$ \\ $$

Commented by Crabby89p13 last updated on 11/Dec/19

why not used residue formula for sinθ?  ((z−z^(−1) )/(2j))

$${why}\:{not}\:{used}\:{residue}\:{formula}\:{for}\:{sin}\theta? \\ $$$$\frac{{z}−{z}^{−\mathrm{1}} }{\mathrm{2}{j}} \\ $$

Commented by mathmax by abdo last updated on 11/Dec/19

we use liearisation to decrease the degre.

$${we}\:{use}\:{liearisation}\:{to}\:{decrease}\:{the}\:{degre}. \\ $$

Commented by Crabby89p13 last updated on 12/Dec/19

oh i c..thanks

$${oh}\:{i}\:{c}..{thanks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com