Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 75440 by aliesam last updated on 11/Dec/19

Commented by MJS last updated on 11/Dec/19

I′m not good at this but it should be true  for any x at least x≥1  Σ_(k=1) ^∞ (((−1)^k e^(−(2k−1)x) )/((2k−1)(1−e^(−2x) )^((2k−1)/2) ))=  =(√(e^(2x) −1))Σ_(k=1) ^∞ ((cos kπ)/((2k−1)(e^(2x) −1)^k ))  maybe someone can show this is indeed the  same as  −arcsin e^(−x)  ∀x≥1

$$\mathrm{I}'\mathrm{m}\:\mathrm{not}\:\mathrm{good}\:\mathrm{at}\:\mathrm{this}\:\mathrm{but}\:\mathrm{it}\:\mathrm{should}\:\mathrm{be}\:\mathrm{true} \\ $$$$\mathrm{for}\:\mathrm{any}\:{x}\:\mathrm{at}\:\mathrm{least}\:{x}\geqslant\mathrm{1} \\ $$$$\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{k}} \mathrm{e}^{−\left(\mathrm{2}{k}−\mathrm{1}\right){x}} }{\left(\mathrm{2}{k}−\mathrm{1}\right)\left(\mathrm{1}−\mathrm{e}^{−\mathrm{2}{x}} \right)^{\frac{\mathrm{2}{k}−\mathrm{1}}{\mathrm{2}}} }= \\ $$$$=\sqrt{\mathrm{e}^{\mathrm{2}{x}} −\mathrm{1}}\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{cos}\:{k}\pi}{\left(\mathrm{2}{k}−\mathrm{1}\right)\left(\mathrm{e}^{\mathrm{2}{x}} −\mathrm{1}\right)^{{k}} } \\ $$$$\mathrm{maybe}\:\mathrm{someone}\:\mathrm{can}\:\mathrm{show}\:\mathrm{this}\:\mathrm{is}\:\mathrm{indeed}\:\mathrm{the} \\ $$$$\mathrm{same}\:\mathrm{as} \\ $$$$−\mathrm{arcsin}\:\mathrm{e}^{−{x}} \:\forall{x}\geqslant\mathrm{1} \\ $$

Commented by mind is power last updated on 12/Dec/19

let α=H(93968)  Σ_(k≥1) (((−1)^k e^(−(2k−1)α) )/((2k−1)(1−e^(−2α) )^((2k−1)/2) ))  A=e^α (√(1−e^(−2α) ))Σ_(k≥1) (((−1)^k )/(2k−1))((e^(−2α) /(1−e^(−2α) )))^k   Σ_(k≥1) (((−x)^k )/(2k−1))  arctan(x)=Σ_(k≥0) (((−1)^k x^(2k+1) )/(2k+1))  x=((e^(−2a) /(1−e^(−2a) )))^(1/2)   A=e^a (√(1−e^(−2a) )).Σ_(k≥0) (((−1)^(k+1) )/(2k+1)).x^(2k+2)   A=−.Σ_(k≥0) (((−1)^k x^(2k+1) )/(2k+1))=−arctan(x)   x=(e^(−a) /(√(1−e^(−2a) )))  lets show arctan((e^(−a) /(√(1−e^(−2a) ))))=arcsin(e^(−a) )  mor generaly   arctan((t/(√(1−t^2 ))))=arcsin(t),0≤t<1  t=sin(α),α∈[0,(π/2)[  ⇒arctan(((sin(α))/(√(1−sin^2 (α)))))=arctan(tg(α))=α=arcsin(sin(α))  ⇒arcsin(t)=arctan((t/(√(1−t^2 ))))  since e^(−α) <1  ⇒arctan((e^(−a) /(√(1−e^(−α) ))))=arcsin(e^(−α) )  ⇒A=−arcsin(e^(−α) )

$$\mathrm{let}\:\alpha=\mathrm{H}\left(\mathrm{93968}\right) \\ $$$$\underset{\mathrm{k}\geqslant\mathrm{1}} {\sum}\frac{\left(−\mathrm{1}\right)^{\mathrm{k}} \mathrm{e}^{−\left(\mathrm{2k}−\mathrm{1}\right)\alpha} }{\left(\mathrm{2k}−\mathrm{1}\right)\left(\mathrm{1}−\mathrm{e}^{−\mathrm{2}\alpha} \right)^{\frac{\mathrm{2k}−\mathrm{1}}{\mathrm{2}}} } \\ $$$$\mathrm{A}=\mathrm{e}^{\alpha} \sqrt{\mathrm{1}−\mathrm{e}^{−\mathrm{2}\alpha} }\underset{\mathrm{k}\geqslant\mathrm{1}} {\sum}\frac{\left(−\mathrm{1}\right)^{\mathrm{k}} }{\mathrm{2k}−\mathrm{1}}\left(\frac{\mathrm{e}^{−\mathrm{2}\alpha} }{\mathrm{1}−\mathrm{e}^{−\mathrm{2}\alpha} }\right)^{\mathrm{k}} \\ $$$$\underset{\mathrm{k}\geqslant\mathrm{1}} {\sum}\frac{\left(−\mathrm{x}\right)^{\mathrm{k}} }{\mathrm{2k}−\mathrm{1}} \\ $$$$\mathrm{arctan}\left(\mathrm{x}\right)=\underset{\mathrm{k}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{\mathrm{k}} \mathrm{x}^{\mathrm{2k}+\mathrm{1}} }{\mathrm{2k}+\mathrm{1}} \\ $$$$\mathrm{x}=\left(\frac{\mathrm{e}^{−\mathrm{2a}} }{\mathrm{1}−\mathrm{e}^{−\mathrm{2a}} }\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$$\mathrm{A}=\mathrm{e}^{\mathrm{a}} \sqrt{\mathrm{1}−\mathrm{e}^{−\mathrm{2a}} }.\underset{\mathrm{k}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{\mathrm{k}+\mathrm{1}} }{\mathrm{2k}+\mathrm{1}}.\mathrm{x}^{\mathrm{2k}+\mathrm{2}} \\ $$$$\mathrm{A}=−.\underset{\mathrm{k}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{\mathrm{k}} \mathrm{x}^{\mathrm{2k}+\mathrm{1}} }{\mathrm{2k}+\mathrm{1}}=−\mathrm{arctan}\left(\mathrm{x}\right)\: \\ $$$$\mathrm{x}=\frac{\mathrm{e}^{−\mathrm{a}} }{\sqrt{\mathrm{1}−\mathrm{e}^{−\mathrm{2a}} }} \\ $$$$\mathrm{lets}\:\mathrm{show}\:\mathrm{arctan}\left(\frac{\mathrm{e}^{−\mathrm{a}} }{\sqrt{\mathrm{1}−\mathrm{e}^{−\mathrm{2a}} }}\right)=\mathrm{arcsin}\left(\mathrm{e}^{−\mathrm{a}} \right) \\ $$$$\mathrm{mor}\:\mathrm{generaly}\: \\ $$$$\mathrm{arctan}\left(\frac{\mathrm{t}}{\sqrt{\mathrm{1}−\mathrm{t}^{\mathrm{2}} }}\right)=\mathrm{arcsin}\left(\mathrm{t}\right),\mathrm{0}\leqslant\mathrm{t}<\mathrm{1} \\ $$$$\mathrm{t}=\mathrm{sin}\left(\alpha\right),\alpha\in\left[\mathrm{0},\frac{\pi}{\mathrm{2}}\left[\right.\right. \\ $$$$\Rightarrow\mathrm{arctan}\left(\frac{\mathrm{sin}\left(\alpha\right)}{\sqrt{\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \left(\alpha\right)}}\right)=\mathrm{arctan}\left(\mathrm{tg}\left(\alpha\right)\right)=\alpha=\mathrm{arcsin}\left(\mathrm{sin}\left(\alpha\right)\right) \\ $$$$\Rightarrow\mathrm{arcsin}\left(\mathrm{t}\right)=\mathrm{arctan}\left(\frac{\mathrm{t}}{\sqrt{\mathrm{1}−\mathrm{t}^{\mathrm{2}} }}\right) \\ $$$$\mathrm{since}\:\mathrm{e}^{−\alpha} <\mathrm{1} \\ $$$$\Rightarrow\mathrm{arctan}\left(\frac{\mathrm{e}^{−\mathrm{a}} }{\sqrt{\mathrm{1}−\mathrm{e}^{−\alpha} }}\right)=\mathrm{arcsin}\left(\mathrm{e}^{−\alpha} \right) \\ $$$$\Rightarrow\mathrm{A}=−\mathrm{arcsin}\left(\mathrm{e}^{−\alpha} \right) \\ $$$$ \\ $$$$ \\ $$

Commented by aliesam last updated on 14/Dec/19

god bless you

$${god}\:{bless}\:{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com