Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 75463 by indalecioneves last updated on 11/Dec/19

Answered by mr W last updated on 12/Dec/19

shape of cable is catenary:  (L/d)=((2 sinh (d/x))/(d/x))  (f/d)=((cosh (d/x)−1)/(d/x))  with t=(d/x) as parameter:   { (((L/d)=((2 sinh t)/t))),(((f/d)=((cosh t−1)/t))) :}  with (f/d)=((100)/(200))=0.5  we get (L/d)≈2.3 from diagram  ⇒L≈2.3×200=460 m

$${shape}\:{of}\:{cable}\:{is}\:{catenary}: \\ $$$$\frac{{L}}{{d}}=\frac{\mathrm{2}\:\mathrm{sinh}\:\frac{{d}}{{x}}}{\frac{{d}}{{x}}} \\ $$$$\frac{{f}}{{d}}=\frac{\mathrm{cosh}\:\frac{{d}}{{x}}−\mathrm{1}}{\frac{{d}}{{x}}} \\ $$$${with}\:{t}=\frac{{d}}{{x}}\:{as}\:{parameter}: \\ $$$$\begin{cases}{\frac{{L}}{{d}}=\frac{\mathrm{2}\:\mathrm{sinh}\:{t}}{{t}}}\\{\frac{{f}}{{d}}=\frac{\mathrm{cosh}\:{t}−\mathrm{1}}{{t}}}\end{cases} \\ $$$${with}\:\frac{{f}}{{d}}=\frac{\mathrm{100}}{\mathrm{200}}=\mathrm{0}.\mathrm{5} \\ $$$${we}\:{get}\:\frac{{L}}{{d}}\approx\mathrm{2}.\mathrm{3}\:{from}\:{diagram} \\ $$$$\Rightarrow{L}\approx\mathrm{2}.\mathrm{3}×\mathrm{200}=\mathrm{460}\:{m} \\ $$

Commented by mr W last updated on 11/Dec/19

Commented by indalecioneves last updated on 11/Dec/19

Thank you, Sir!  God bless you!

$${Thank}\:{you},\:{Sir}! \\ $$$${God}\:{bless}\:{you}! \\ $$

Answered by mr W last updated on 11/Dec/19

Approximation as parabola:  y=f((x/d))^2   y′=((2fx)/d^2 )  L=2∫_0 ^d (√(1+(((2fx)/d^2 ))^2 ))dx  (L/d)=2∫_0 ^d (√(1+(((2fx)/d^2 ))^2 ))d((x/d))  (L/d)=2∫_0 ^1 (√(1+(((2fu)/d))^2 ))du  (L/d)=(d/f)∫_0 ^1 (√(1+(((2fu)/d))^2 ))d(((2fu)/d))  ⇒(L/d)=(1/((2f)/d)){ln [((2f)/d)+(√(1+(((2f)/d))^2 ))]+((2f)/d)(√(1+(((2f)/d))^2 ))}  with ((2f)/d)=((2×100)/(200))=1  ⇒(L/d)=ln (1+(√2))+(√2)=2.296  ⇒L=2.296×200≈460 m

$${Approximation}\:{as}\:{parabola}: \\ $$$${y}={f}\left(\frac{{x}}{{d}}\right)^{\mathrm{2}} \\ $$$${y}'=\frac{\mathrm{2}{fx}}{{d}^{\mathrm{2}} } \\ $$$${L}=\mathrm{2}\int_{\mathrm{0}} ^{{d}} \sqrt{\mathrm{1}+\left(\frac{\mathrm{2}{fx}}{{d}^{\mathrm{2}} }\right)^{\mathrm{2}} }{dx} \\ $$$$\frac{{L}}{{d}}=\mathrm{2}\int_{\mathrm{0}} ^{{d}} \sqrt{\mathrm{1}+\left(\frac{\mathrm{2}{fx}}{{d}^{\mathrm{2}} }\right)^{\mathrm{2}} }{d}\left(\frac{{x}}{{d}}\right) \\ $$$$\frac{{L}}{{d}}=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}+\left(\frac{\mathrm{2}{fu}}{{d}}\right)^{\mathrm{2}} }{du} \\ $$$$\frac{{L}}{{d}}=\frac{{d}}{{f}}\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}+\left(\frac{\mathrm{2}{fu}}{{d}}\right)^{\mathrm{2}} }{d}\left(\frac{\mathrm{2}{fu}}{{d}}\right) \\ $$$$\Rightarrow\frac{{L}}{{d}}=\frac{\mathrm{1}}{\frac{\mathrm{2}{f}}{{d}}}\left\{\mathrm{ln}\:\left[\frac{\mathrm{2}{f}}{{d}}+\sqrt{\mathrm{1}+\left(\frac{\mathrm{2}{f}}{{d}}\right)^{\mathrm{2}} }\right]+\frac{\mathrm{2}{f}}{{d}}\sqrt{\mathrm{1}+\left(\frac{\mathrm{2}{f}}{{d}}\right)^{\mathrm{2}} }\right\} \\ $$$${with}\:\frac{\mathrm{2}{f}}{{d}}=\frac{\mathrm{2}×\mathrm{100}}{\mathrm{200}}=\mathrm{1} \\ $$$$\Rightarrow\frac{{L}}{{d}}=\mathrm{ln}\:\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)+\sqrt{\mathrm{2}}=\mathrm{2}.\mathrm{296} \\ $$$$\Rightarrow{L}=\mathrm{2}.\mathrm{296}×\mathrm{200}\approx\mathrm{460}\:{m} \\ $$

Commented by mr W last updated on 11/Dec/19

Commented by mr W last updated on 11/Dec/19

we see the approximation as  parabola is exact enough if the  cable is flat.  the advantage is that we can get  L/d directly from f/d using the  formula:  (L/d)=(1/((2f)/d)){ln [((2f)/d)+(√(1+(((2f)/d))^2 ))]+((2f)/d)(√(1+(((2f)/d))^2 ))}

$${we}\:{see}\:{the}\:{approximation}\:{as} \\ $$$${parabola}\:{is}\:{exact}\:{enough}\:{if}\:{the} \\ $$$${cable}\:{is}\:{flat}. \\ $$$${the}\:{advantage}\:{is}\:{that}\:{we}\:{can}\:{get} \\ $$$${L}/{d}\:{directly}\:{from}\:{f}/{d}\:{using}\:{the} \\ $$$${formula}: \\ $$$$\frac{{L}}{{d}}=\frac{\mathrm{1}}{\frac{\mathrm{2}{f}}{{d}}}\left\{\mathrm{ln}\:\left[\frac{\mathrm{2}{f}}{{d}}+\sqrt{\mathrm{1}+\left(\frac{\mathrm{2}{f}}{{d}}\right)^{\mathrm{2}} }\right]+\frac{\mathrm{2}{f}}{{d}}\sqrt{\mathrm{1}+\left(\frac{\mathrm{2}{f}}{{d}}\right)^{\mathrm{2}} }\right\} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com