All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 75484 by vishalbhardwaj last updated on 11/Dec/19
Ifθiseleminatedfromtheequationx=acos(θ−α)andy=bcos(θ−β)thenprovethatx2a2+y2b2−2xyabcos(α−β)=sin2(α−β)
Answered by MJS last updated on 12/Dec/19
x=acos(θ−α)⇒θ=α−arccosxay=bcos(α−β−arccosxa)[cos(u+v)=cosucosv−sinusinv][sin(u+v)=cosusinv−sinucosv]y=baxcos(α−β)±baa2−x2sin(α−β)x2a2+y2b2−2xyabcos(α−β)=sin2(α−β)⇒y=baxcos(α−β)±baa2−x2sin(α−β)sameasabove⇒proved
Terms of Service
Privacy Policy
Contact: info@tinkutara.com