Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 75502 by mathocean1 last updated on 12/Dec/19

Solve it in ]−π;π]  sin(2x)=cos(x)

Solveitin]π;π]sin(2x)=cos(x)

Commented by mathmax by abdo last updated on 12/Dec/19

sin(2x)=cosx ⇔ sin(2x)=sin((π/2)−x) ⇔2x=(π/2)−x+2kπ or  2x =(π/2)+x +2kπ ( kfrom Z) ⇔3x =(π/2) +2kπ or x=(π/2)+ 2kπ ⇔  x =(π/6) +((2kπ)/3) or x=(π/2) +2kπ  (k∈ Z)

sin(2x)=cosxsin(2x)=sin(π2x)2x=π2x+2kπor2x=π2+x+2kπ(kfromZ)3x=π2+2kπorx=π2+2kπx=π6+2kπ3orx=π2+2kπ(kZ)

Commented by mathmax by abdo last updated on 12/Dec/19

case 1  −π <(π/2)+2kπ <π ⇒−1<(1/2) +2k<1 ⇒−(3/2)<2k<(1/2) ⇒  −(3/4)<k<(1/4) ⇒−0,...<k<0,... ⇒k=0 ⇒x=(π/2)  case 2  −π<(π/6) +((2kπ)/3)<π ⇒−1<(1/6) + ((2k)/3)<1 ⇒  −(7/6)<((2k)/3)<(5/6) ⇒−(7/2)<2k<(5/2) ⇒−(7/4)<k<(5/4) ⇒−1,...<k<1,..⇒  k ∈{−1,0,1}   k=−1 ⇒x =(π/6)−((2π)/3) =((−3π)/6) =−(π/2)  k=0 ⇒x=(π/6)  k=1 ⇒x=(π/6)+((2π)/3) =((5π)/6)

case1π<π2+2kπ<π1<12+2k<132<2k<1234<k<140,...<k<0,...k=0x=π2case2π<π6+2kπ3<π1<16+2k3<176<2k3<5672<2k<5274<k<541,...<k<1,..k{1,0,1}k=1x=π62π3=3π6=π2k=0x=π6k=1x=π6+2π3=5π6

Terms of Service

Privacy Policy

Contact: info@tinkutara.com