Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 75527 by liki last updated on 12/Dec/19

Commented by liki last updated on 12/Dec/19

...emergency plz i need someone to check

$$...{emergency}\:{plz}\:{i}\:{need}\:{someone}\:{to}\:{check}\: \\ $$

Answered by MJS last updated on 12/Dec/19

y=(√(2x^2 −1))  minimum at x=±((√2)/2) ⇒ y=0  maximum doesn′t exist because  lim_(x→±∞) (√(2x^2 −1))=+∞  ⇒ range is [0; +∞[

$${y}=\sqrt{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{1}} \\ $$$$\mathrm{minimum}\:\mathrm{at}\:{x}=\pm\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:\Rightarrow\:{y}=\mathrm{0} \\ $$$$\mathrm{maximum}\:\mathrm{doesn}'\mathrm{t}\:\mathrm{exist}\:\mathrm{because} \\ $$$$\underset{{x}\rightarrow\pm\infty} {\mathrm{lim}}\sqrt{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{1}}=+\infty \\ $$$$\Rightarrow\:\mathrm{range}\:\mathrm{is}\:\left[\mathrm{0};\:+\infty\left[\right.\right. \\ $$

Commented by liki last updated on 12/Dec/19

..God bless you sir,i appriciate you time.

$$..{God}\:{bless}\:{you}\:{sir},{i}\:{appriciate}\:{you}\:{time}. \\ $$

Commented by liki last updated on 12/Dec/19

...thank you so much sir.

$$...{thank}\:{you}\:{so}\:{much}\:{sir}. \\ $$

Commented by MJS last updated on 12/Dec/19

defined for x∈R\]−((√2)/2); ((√2)/2)[

$$\left.\mathrm{defined}\:\mathrm{for}\:{x}\in\mathbb{R}\backslash\right]−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}};\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\left[\right. \\ $$

Commented by liki last updated on 12/Dec/19

...sory sir how about if i say make x the subject?

$$...{sory}\:{sir}\:{how}\:{about}\:{if}\:{i}\:{say}\:{make}\:{x}\:{the}\:{subject}? \\ $$

Commented by MJS last updated on 12/Dec/19

y=(√(2x^2 −1))  y^2 =2x^2 −1  x^2 =((y^2 +1)/2)  x=±((√2)/2)(√(y^2 +1))  but to ensure it′s really the inverse of  y=(√(2x^2 −1)) we must keep y≥0  y≥0 ⇒ (x<−((√2)/2)∨((√2)/2)<x)

$${y}=\sqrt{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{1}} \\ $$$${y}^{\mathrm{2}} =\mathrm{2}{x}^{\mathrm{2}} −\mathrm{1} \\ $$$${x}^{\mathrm{2}} =\frac{{y}^{\mathrm{2}} +\mathrm{1}}{\mathrm{2}} \\ $$$${x}=\pm\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\sqrt{{y}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\mathrm{but}\:\mathrm{to}\:\mathrm{ensure}\:\mathrm{it}'\mathrm{s}\:\mathrm{really}\:\mathrm{the}\:\mathrm{inverse}\:\mathrm{of} \\ $$$${y}=\sqrt{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{1}}\:\mathrm{we}\:\mathrm{must}\:\mathrm{keep}\:{y}\geqslant\mathrm{0} \\ $$$${y}\geqslant\mathrm{0}\:\Rightarrow\:\left({x}<−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\vee\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}<{x}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com