Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 75547 by TawaTawa last updated on 12/Dec/19

      Evaluate:     Σ_(n = 0) ^∞ ((1/(5n + 1)))

$$\:\:\:\:\:\:\mathrm{Evaluate}:\:\:\:\:\:\underset{\mathrm{n}\:=\:\mathrm{0}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{\mathrm{5n}\:+\:\mathrm{1}}\right) \\ $$

Commented by mind is power last updated on 13/Dec/19

mor generaly  let S=Σ_(k≥0) (((−1)^k )/(ak+b))  withe  (a,b)∈N^(∗2)   withe gcd(a,b)=1  S=(1/b).Σ(((−1)^k )/(1+(a/b)k))  let f(x)=(1/(1+x^(a/b) ))  ∣x∣<1⇒f(x)=Σ_(k≥0) (−1)^k .x^((ak)/b)   let ε>0⇒  since we have unifirm cv we switch ÷  ∫_0 ^(1−ε) f(x)dx=Σ_(k≥0) (−1)^k ∫_0 ^(1−ε) x^((ak)/b) dx  S=Σ_(k≥0) (−1)^k .(1/(1+((ak)/b)))(1−ε)^(((ak)/b)+1)   we tack ε→0  justify by the fact  ∀ε>0 S=   Σ_(k≥0) (((−1)^k )/(1+((ak)/b)))(1−ε)^(((ak)/b)+1) Converge uniformily in compact [0,1−ε]  ∫_0 ^1 (dx/(1+x^(a/b) ))=S,(a/b)≠1  since  gcd(a,b)=1   x=tg^(2(b/a)) u  ⇒dx=((2b)/a)(1+tg^2 (u))tg^((2b−a)/a) (u)du  S=((2b)/a).∫_0 ^(π/4) tg^((2b−a)/a) (u)du  S=((2b)/a)∫_0 ^(π/4) sin^(((2b)/a)−1) (u).cos^(((−2b)/a)+2−1) (u)du  withe  B^∼ (x,y,s)=2∫_0 ^s cos^(2x−1) (t).sin^(2y−1) (t)dt  bS=(b/a)B^∼ ((b/a),1−(b/a),(π/4))  ⇒Σ_(k≥0) (((−1)^k )/(ak+b))=((B^∼ ((b/a),1−(b/a),(π/4)))/a)  ,∀(a,b)∈N^(∗2) withe gcd(a,b)=1  and (a,b)≠(1,1)

$$\mathrm{mor}\:\mathrm{generaly} \\ $$$$\mathrm{let}\:\mathrm{S}=\underset{\mathrm{k}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{\mathrm{k}} }{\mathrm{ak}+\mathrm{b}} \\ $$$$\mathrm{withe}\:\:\left(\mathrm{a},\mathrm{b}\right)\in\mathbb{N}^{\ast\mathrm{2}} \\ $$$$\mathrm{withe}\:\mathrm{gcd}\left(\mathrm{a},\mathrm{b}\right)=\mathrm{1} \\ $$$$\mathrm{S}=\frac{\mathrm{1}}{\mathrm{b}}.\Sigma\frac{\left(−\mathrm{1}\right)^{\mathrm{k}} }{\mathrm{1}+\frac{\mathrm{a}}{\mathrm{b}}\mathrm{k}} \\ $$$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\mathrm{1}+\mathrm{x}^{\frac{\mathrm{a}}{\mathrm{b}}} } \\ $$$$\mid\mathrm{x}\mid<\mathrm{1}\Rightarrow\mathrm{f}\left(\mathrm{x}\right)=\underset{\mathrm{k}\geqslant\mathrm{0}} {\sum}\left(−\mathrm{1}\right)^{\mathrm{k}} .\mathrm{x}^{\frac{\mathrm{ak}}{\mathrm{b}}} \\ $$$$\mathrm{let}\:\varepsilon>\mathrm{0}\Rightarrow\:\:\mathrm{since}\:\mathrm{we}\:\mathrm{have}\:\mathrm{unifirm}\:\mathrm{cv}\:\mathrm{we}\:\mathrm{switch}\:\boldsymbol{\div} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}−\varepsilon} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}=\underset{\mathrm{k}\geqslant\mathrm{0}} {\sum}\left(−\mathrm{1}\right)^{\mathrm{k}} \int_{\mathrm{0}} ^{\mathrm{1}−\varepsilon} \mathrm{x}^{\frac{\mathrm{ak}}{\mathrm{b}}} \mathrm{dx} \\ $$$$\mathrm{S}=\underset{\mathrm{k}\geqslant\mathrm{0}} {\sum}\left(−\mathrm{1}\right)^{\mathrm{k}} .\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{ak}}{\mathrm{b}}}\left(\mathrm{1}−\varepsilon\right)^{\frac{\mathrm{ak}}{\mathrm{b}}+\mathrm{1}} \\ $$$$\mathrm{we}\:\mathrm{tack}\:\varepsilon\rightarrow\mathrm{0}\:\:\mathrm{justify}\:\mathrm{by}\:\mathrm{the}\:\mathrm{fact} \\ $$$$\forall\varepsilon>\mathrm{0}\:\mathrm{S}=\:\:\:\underset{\mathrm{k}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{\mathrm{k}} }{\mathrm{1}+\frac{\mathrm{ak}}{\mathrm{b}}}\left(\mathrm{1}−\varepsilon\right)^{\frac{\mathrm{ak}}{\mathrm{b}}+\mathrm{1}} \mathrm{Converge}\:\mathrm{uniformily}\:\mathrm{in}\:\mathrm{compact}\:\left[\mathrm{0},\mathrm{1}−\varepsilon\right] \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{dx}}{\mathrm{1}+\mathrm{x}^{\frac{\mathrm{a}}{\mathrm{b}}} }=\mathrm{S},\frac{\mathrm{a}}{\mathrm{b}}\neq\mathrm{1}\:\:\mathrm{since}\:\:\mathrm{gcd}\left(\mathrm{a},\mathrm{b}\right)=\mathrm{1}\: \\ $$$$\mathrm{x}=\mathrm{tg}^{\mathrm{2}\frac{\mathrm{b}}{\mathrm{a}}} \mathrm{u} \\ $$$$\Rightarrow\mathrm{dx}=\frac{\mathrm{2b}}{\mathrm{a}}\left(\mathrm{1}+\mathrm{tg}^{\mathrm{2}} \left(\mathrm{u}\right)\right)\mathrm{tg}^{\frac{\mathrm{2b}−\mathrm{a}}{\mathrm{a}}} \left(\mathrm{u}\right)\mathrm{du} \\ $$$$\mathrm{S}=\frac{\mathrm{2b}}{\mathrm{a}}.\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{tg}^{\frac{\mathrm{2b}−\mathrm{a}}{\mathrm{a}}} \left(\mathrm{u}\right)\mathrm{du} \\ $$$$\mathrm{S}=\frac{\mathrm{2b}}{\mathrm{a}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{sin}^{\frac{\mathrm{2b}}{\mathrm{a}}−\mathrm{1}} \left(\mathrm{u}\right).\mathrm{cos}^{\frac{−\mathrm{2b}}{\mathrm{a}}+\mathrm{2}−\mathrm{1}} \left(\mathrm{u}\right)\mathrm{du} \\ $$$$\mathrm{withe} \\ $$$$\overset{\sim} {\mathrm{B}}\left(\mathrm{x},\mathrm{y},\mathrm{s}\right)=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{s}} \mathrm{cos}^{\mathrm{2x}−\mathrm{1}} \left(\mathrm{t}\right).\mathrm{sin}^{\mathrm{2y}−\mathrm{1}} \left(\mathrm{t}\right)\mathrm{dt} \\ $$$$\mathrm{bS}=\frac{\mathrm{b}}{\mathrm{a}}\overset{\sim} {\mathrm{B}}\left(\frac{\mathrm{b}}{\mathrm{a}},\mathrm{1}−\frac{\mathrm{b}}{\mathrm{a}},\frac{\pi}{\mathrm{4}}\right) \\ $$$$\Rightarrow\underset{\mathrm{k}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{\mathrm{k}} }{\mathrm{ak}+\mathrm{b}}=\frac{\overset{\sim} {\mathrm{B}}\left(\frac{\mathrm{b}}{\mathrm{a}},\mathrm{1}−\frac{\mathrm{b}}{\mathrm{a}},\frac{\pi}{\mathrm{4}}\right)}{\mathrm{a}}\:\:,\forall\left(\mathrm{a},\mathrm{b}\right)\in\mathbb{N}^{\ast\mathrm{2}} \mathrm{withe}\:\mathrm{gcd}\left(\mathrm{a},\mathrm{b}\right)=\mathrm{1} \\ $$$$\mathrm{and}\:\left(\mathrm{a},\mathrm{b}\right)\neq\left(\mathrm{1},\mathrm{1}\right) \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by mathmax by abdo last updated on 12/Dec/19

pehaps the Q is evaluate Σ_(n=0) ^∞  (((−1)^n )/(5n+1))

$${pehaps}\:{the}\:{Q}\:{is}\:{evaluate}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{5}{n}+\mathrm{1}} \\ $$

Commented by TawaTawa last updated on 12/Dec/19

ok, help me sir

$$\mathrm{ok},\:\mathrm{help}\:\mathrm{me}\:\mathrm{sir} \\ $$

Commented by TawaTawa last updated on 13/Dec/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented by mind is power last updated on 13/Dec/19

y′re Welcom

$$\mathrm{y}'\mathrm{re}\:\mathrm{Welcom} \\ $$

Answered by mind is power last updated on 12/Dec/19

diverge +∞

$$\mathrm{diverge}\:+\infty \\ $$

Answered by mind is power last updated on 12/Dec/19

Σ_(n≥0) ^(+∞) (1/(5n+1))≥Σ_(n≥2) (1/(5n))=(1/5)Σ_(n≥2) (1/n)......E  (1/(n+1))≤∫_n ^(n+1) (1/x)≤(1/n)  ⇒Σ_(n=2) ^(+N) (1/n)≥ln(N+1)−ln(2)⇒  lim _(N→∞) Σ_(n=2) ^N (1/n)≥lim_(N→+∞) {ln(N+1)−ln(2)}=+∞  by E we get +∞

$$\underset{\mathrm{n}\geqslant\mathrm{0}} {\overset{+\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{5n}+\mathrm{1}}\geqslant\underset{\mathrm{n}\geqslant\mathrm{2}} {\sum}\frac{\mathrm{1}}{\mathrm{5n}}=\frac{\mathrm{1}}{\mathrm{5}}\underset{\mathrm{n}\geqslant\mathrm{2}} {\sum}\frac{\mathrm{1}}{\mathrm{n}}......\mathrm{E} \\ $$$$\frac{\mathrm{1}}{\mathrm{n}+\mathrm{1}}\leqslant\int_{\mathrm{n}} ^{\mathrm{n}+\mathrm{1}} \frac{\mathrm{1}}{\mathrm{x}}\leqslant\frac{\mathrm{1}}{\mathrm{n}} \\ $$$$\Rightarrow\underset{\mathrm{n}=\mathrm{2}} {\overset{+\mathrm{N}} {\sum}}\frac{\mathrm{1}}{\mathrm{n}}\geqslant\mathrm{ln}\left(\mathrm{N}+\mathrm{1}\right)−\mathrm{ln}\left(\mathrm{2}\right)\Rightarrow \\ $$$$\mathrm{lim}\underset{\mathrm{N}\rightarrow\infty} {\:}\underset{\mathrm{n}=\mathrm{2}} {\overset{\mathrm{N}} {\sum}}\frac{\mathrm{1}}{\mathrm{n}}\geqslant\underset{\mathrm{N}\rightarrow+\infty} {\mathrm{lim}}\left\{\mathrm{ln}\left(\mathrm{N}+\mathrm{1}\right)−\mathrm{ln}\left(\mathrm{2}\right)\right\}=+\infty \\ $$$$\mathrm{by}\:\mathrm{E}\:\mathrm{we}\:\mathrm{get}\:+\infty \\ $$$$ \\ $$

Commented by TawaTawa last updated on 12/Dec/19

God bless you sir.  Is there shortcut to know a series diverges

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$$$\mathrm{Is}\:\mathrm{there}\:\mathrm{shortcut}\:\mathrm{to}\:\mathrm{know}\:\mathrm{a}\:\mathrm{series}\:\mathrm{diverges}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com