All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 75552 by aliesam last updated on 12/Dec/19
Commented by mathmax by abdo last updated on 12/Dec/19
letI=∫−333∣(x−2)2−4∣dx⇒I=∫−333∣x2−4x∣dx=∫−333∣x∣∣x−4∣dx=∫−30(−x)(4−x)dx+∫033x(x−4)dx=∫−30(x2−4x)dx+∫033(x2−4x)dx=∫−333(x2−4x)dx=[x33−2x2]−333=(33)33−2(33)2−(−3)33+2(−3)2=273−52+3+6=283−46
Answered by Kunal12588 last updated on 12/Dec/19
I=∫−333∣(x−2)2−4∣dx=∫−30[(x−2)2−4]dx−∫04[(x−2)2−4]dx+∫433[(x−2)2−4]dx=[13(x−2)3−4(x−2)]−30−[13(x−2)3−4(x−2)]04+[13(x−2)3−4(x−2)]433=[83+8+13(2+3)3−(2+3)]−[83−8−83+8]+[13(33−2)3−4(33−2)−83+8]plscalculate
Terms of Service
Privacy Policy
Contact: info@tinkutara.com